Stat 115: Probability
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Theory

* French mathematicians Pierre de Fermat (1601-1665)
and Blaise Pascal (1623-1662) started formulating the
fundamental principles of probability theory.

* Came about as answers to questions of gamblers on
games involving dice or cards
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10.1 Probability Models

Definition 10.1: Abstract Model

An abstract model is a description of the essential
properties of a phenomenon that is formulated in
mathematical terms.

Example: area of a rectangle
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10.1 Probabilistic Models

Definition 10.2: Deterministic Model

A deterministic model is a type of abstract model that
describes a phenomenon through known relationships
among the states and events, in which a given input
will always produce the same output.
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Notes for Deterministic Model

* Given the same input, the model will always produce
the same output.

* This model does not leave any room for random
variation.

* We cannot describe the outcomes in a game of chance
using this type of model.
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10.1 Probabilistic Models

Detfinition 10.3: Probabilistic/Stochastic Model

It is a type of abstract model that describes a
phenomenon by assigning a likelihood of occurrence
to the different possible outcomes of the process.
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Notes on Probabilistic Model

* Example: toss of a coin

* No matter how many times we repeat the process, it is
impossible to predict with certainty what the next
outcomes will be.

* Given the same inputs, the output may be different.
(example: experiments)

e This is the type of model that we use in Inferential
Statistics. It helps us predict with some degree of
confidence the future outcomes.
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Basic Concepts of Probability

Detfinition 10.4: Random Experiment

It is a process that can be repeated under similar
conditions but whose outcome cannot be predicted
with certainty beforehand.

Examples: toss of a coin, toss of a die
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Note on Random Experiments

* In inferential statistics, the process of selecting a
sample of size n from a population size N using
probability sampling is one of the random experiments
of interest.

e It is just like selecting n cards at random from a deck of
N = 52 cards.

* Even if we use exactly the same sample selection
procedure, there is no way we can predict, without any
error, what the composition of the next sample will be.
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Features of a Random Experiment

o All outcomes are known in advance.

* The outcome of any one trial cannot
be predicted with certainty.

* Trials can be repeated under
identical conditions.
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Basic Concepts of Probability

Detfinition 10.5: Sample Space

The sample space, denoted by  (Greek letter,
omega), is the collection of all possible outcomes of a
random experiment. An element is called a sample
point.

11
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Two Ways of Specifying a Set

1.  Roster Method

- listing down all the elements belonging in the set
then enclosing them in braces.

>. Rule Method

- stating a rule that the elements must satisfy in
order to belong in the set then enclosing this rule in
braces.

12



g ample of Roster an% %u}e

Method

Example 1: Toss a coin once.

Roster Method: Q ={H, T}
Rule Method :Q ={x/x= {H,T}}

Example 2: Toss a coin twice.

Roster Method: Q ={HH, HT, TH, TT}
Rule Method : Q ={(x,y)/ x={H,T} and y= {H,T}}
NOTE: Tree diagram

13
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ILLUSTRATION

Rolling a die and observing the
number of dots on the upturned face | e

o=t W B B F N B
e - - -
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Basic Concepts of Probability

Definition 10.6: Event

An event is a subset of the sample space whose
probability is defined. We say that an event occurred
if the outcome of the experiment is one of the sample
points belonging in the event; otherwise, the event
did not occur.

We use any capital Latin letter to denote an event.

15
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ILLUSTRATION

=1 7 5 15 b

An event of

observing odd-
number of dots
In a roll of a die

E . -{1 3 5}

An event of
observing even-
number of dots In
a roll of a die

E,={2,4, 6}
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Visualizing Events

* Contingency Tables

Ace Not Ace Total
Black 2 24 26
Red 2 24 26
Total 4 48 52

Ace

* Tree Diagrams /
~__ Black =

Cards

1.7
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Basic Concepts in Probability

Detfinition 10.7: Impossible Event and Sure Event

The impossible event is the empty set, ). The sure
event is the sample space, ().

Reading Assignment: p. 289 to 291
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Examples of Events using Venn Diagram

* Universal set

* Theset A

* A complement

*AUB

s AUBUC

*ANB

e ANBMC

e Al Be

* A and B are mutually exclusive events

19
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Basic Concepts of Probability

Detfinition 10.8: Mutually Exclusive Events

Two events A and B are mutually exclusive events if
and only if A"} B = ; that is, A and B have no
elements in common.

20



Mutually Exclusive Events

Two events are mutually exclusive if the two events
cannot occur simultaneously.

Example:

Coin toss: either a head or a tail, but not both. The events
head and tail are mutually exclusive.

21



amples of Mutually Exclusive
Events

* Events A and A°

* Events A and B/ 1A¢

e Events A["|B and A" B¢
* Any event A and @

22
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Definition 10.9: Probability of an event A (by Andrey
Kolmogorov (1903-1987)

The probability of an event A, denoted by P(A), is a
function that assigns a measure of chance that event A will
occur and must satisfy the following properties:
a) o0=P(A) <1foranyevent A
b) P(Q) =1
c) Finite Additivity. If A can be expressed as the union of n
mutually exclusive events, that is, A = A1 U A> U...U An,

then P(A:) + P(Az) + ... + P(An).
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! PROBABILITY

Note: Sum of the probabilities
of all mutually exclusive and
collective exhaustive events
Is 1

1 Certain
The numerical measure of _
the likelihood that an event =
will occur =
Between 0 and 1 05 | |-

0 Impossible

24
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Exercise

Find the errors in each of the following assignments of
probabilities.

a. The probabilities that a student will have o, 1, 2, 3, or 4 or more
mistakes are 0.41, 0.37, 0.24, 0.13, and -0.15 respectively.

b. The probability that it will rain tomorrow is 0.46 and the
probability that it will not rain tomorrow is 0.55.

c. The probabilities that an automobile salesperson will sell o, 1, 2,
or 3 items on any given day are, 0.24, 0.43, 0.26, and o.21.

d. On asingle draw from a deck of playing cards the probability of
selecting a heart is 1/4, the probability of selecting a black card is
Y5, and the probability of selecting both a heart and a black card
is 1/8.

25



Assignment

* Do pp. 295-296 (Exercises for section 10.2)

26



Approaches to Assigning
Probabilities

* Subjective
confident student views chances of passing a course to be near 100
%

* Logical

symmetry/equally likely: coin, dice, cards etc. (A PRIORI
assignment)

* Empirical

chances of rain 75 % since it rained 15 out of past 20 days (A
POSTERIORI)

27



proaches to Assigning

Probabilities

Definition 10.10: A Priori or Classical Probability

(Gerolamo, Cardano (1501-1576)

The method of using a priori or classical probability assigns
probabilities to events before the experiment is performed
using the following rule:

If an experiment can result in any one of N different equally
likely outcomes, and if exactly n of these outcomes belong
to event A, then

no.o E-’EE-’??IE-’HI'S f?l.";
o -

n
no.of elementsinfl N
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Notes on A Priori

* Its use is restricted to experiments whose sample space
contains equiprobable outcomes, and consequently,
the sample space must have only a finite number of
sample points.

29



z eps in Assigning EI‘OEaEI}I!IES

Using A Priori
Step 1: Specity the sample space. Make sure that the

outcomes are equiprobable

Step 2: Specity event A whose probability you are
interested in.

Step 3: Count the number of samples points in {2 and
denote this by N. Count the number of sample points
in event A and denote this by n.

Step 4: Compute for the probability of event A using the
formula, P(A) = n/N.

30



! xamples of A Priori:

1. Afair coin is tossed 3 times. Find the probability of
the following events:

a) A = event of observing tails in the first 2 tosses
b) B = event of observing exactly 2 tails
c) C = event of observing at most 1 tail

>. Inadeck of cards, find the probability of the
following events:

a) A = event of getting a King
b) B = event of getting a spade
c) C = event of getting a card lower than 5

31



e on Classical Definition o
Probability:

* This allows us to view proportions in terms of probabilities.

* We define the sample space as the collection of elements in
the population.

* Let A = event that the selected element possesses the
characteristic of interest.

* Thus, by classical definition of probability:

no.of elementsin A
P(A) " no.of elements inthe population

= proportion of elements possessing the

characteristic of interest

e
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“Example of Proportionsin terms of

Probabilities

* Let A = event of selecting a student who uses the
Facebook more than 3 hours a day

* Let B = event of selecting a student who uses the
Globe line

3



Probabllltles

Definition 10.11: Posteriori or Relative Frequency

The method of using a posteriori or relative frequency
assigns probabilities to events by repeating the experiment
a large number of times and using the following rule:

[f a random experiment is repeated many times under
uniform conditions, use the empirical probability of

event A to assign its probability as follows:
no.of times event A occurred

no.of times experiment was repeated

empirical P(A) —

34
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Notes on A Posteriori

* The A Posteriori of the probability of event A is the
limiting value of its empirical probability or
relative frequency of occurrence of event A if we
repeat the process endlessly and under uniform
conditions.

* A Priori probabilities uses deduction by assuming
equal case occurrence

* A Posteriori probabilities uses induction from relative
frequencies.

%15
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Notes on A Posteriori

* Advantage of Using A POSTERIORI: not restricted to
random experiments that generate a sample space
containing equiprobable outcomes.

* This approach can now be used to assign probabilities
to events that arise from die-throwing experiments
where the die is NOT fair; or from coin-tossing
experiments where the coin is NOT balanced.

36



PApproaches to Assigning

Probabilities

Definition 10.12: Subjective probability

Subjective probability assigns probabilities to events
by using intuition, personal beliefs, and other indirect
information.

HOMEWORK: Do exercises 1 and 3 for section 10.3, p.
302

%Y



RULES OF COUNTING

Theorem 10.1: Basic Principle of Counting

Suppose an experiment can be performed in two
stages. If there are n distinct possible outcomes in the
first stage of the experiment and if, for each outcome
of the first stage, there are m distinct possible
outcomes in the second stage, then there are n x m
possible outcomes of this experiment.

38
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Rules of Counting

Theorem 10.2: Generalized Basic Principle of Counting
(Multiplication Rule)

Suppose an experiment can be performed in k stages. If there
are n, distinct possible outcomes in the first stage, and if for each
of these n, outcomes there are n, distinct possible outcomes in
the second stage, and if for each of the nixnz outcomes of the
first 2 stages, there are n, distinct possible outcomes in the third
stage; and continuing in this manner, until we reach the last
stage where there are n, distinct possible outcomes for each of
the outcomes of the first (k-1) stages, then there are n, x n, x
n.x...x n; possible outcomes of the experiment

%ie



E amples Using Gen‘érailze! !asic

Principle of Counting

1. How many sample points are there in the sample
space when a coin is tossed once, twice, and thrice.

2. How many sample points are there in the sample
space when a die is tossed once and twice?

5. How many even 3-digit numbers can be formed from
the digits 1,2,5,6, and 9 if each digit can be used only
once?

4. How many ways can a 10-question true-false
examination be answered?

40



Rules of Counting

Definition 10.13: r-permutation

An r-permutation of set Z is an ordered arrangement
of r distinct elements selected from the set Z. It can
be represented by an ordered r-tuple with distinct
coordinates. If set Z contains n distinct elements then
the number of r-permutations of set Z is denoted by
P(n,r) or P_, read as “permutation n taken r”.

r.’

41



Rules of Counting

Definition 10.14: r-combination

An r-combination of set Z is a subset of set Z that
contains r distinct elements. If set Z contains n
distinct elements then the number of r-combinations
of set Z is denoted by C(n,r) or, read as “n taken r”.

42



E amples of r-permui aglon an! r-

combination

1. SupposeZ ={A, B, C}. Listdown all the possible 3-
permutations of Z. List down all the possible 3-
combinations of Z.

2. SupposeZ =1{A, B, C,D}. Listdown all the possible
4-permutations of Z. List down all the possible 4-
combinations of Z.

43
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Rules of Counting

Definition 10.15: factorial notation

The factorial notation is a compact representation
for the product of the first n consecutive positive
integers. It is denoted by n! (read as “n factorial”) and
n!=(n)x(n-1)x(n-2)x...x(2)x(1) where n is a positive
integer. We also define o!=1.

44
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Rules of Counting

Theorem 10.3: The number of distinct r-
permutations that we can form from the n distinct
elements of the set Z is

n!

P(n,r) = (n)x(n-1)x(n-2)x...x(n-r+1) = FEEET

As a corollary, the number of permutations of all the n
distinct elements of set Z is n!. We can derive this by
taking r=n so that P(n,n)=n!.

45
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Examples of Permutation:

1. Two lottery tickets are drawn from 20 for the first
and second prize. Find the number of sample points
in the sample space.

>. In how many ways can the 5 starting positions on a
basketball team be filled with 8 men who can play
any position?

46
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Examples of Permutation:

3. A classroom has 6 rows of desks with 8 desks in a
row. A class consists of 10 boys and 15 girls.

a) How many ways can the teacher select and arrange 8
students in this class who will occupy the first row?

b) Suppose the teacher does not want any boy to occupy
the first row. How many ways can the teacher select
and arrange 8 students who will occupy the first row?

47
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Solution To Example no. 3:

Solution: a) There are 8 stages in the experiment. The
ith stage is the selection of the student who will occupy
the ith position in the first row, i=1,2,...,8. Since a
student cannot occupy two positions at the same time,
whoever was selected in the previous stage cannot
anymore be selected in the current stage. We can use
Theorem 10.3 to answer this question where r=8 and
n=25 because the teacher is choosing 8 distinct
students from 25 students. Thus, the answer is
P(25,8)= 43,609,104,000.

48
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Solution To Example no. 3:

Solution:

b) Using Theorem 10.3 again where r=8 but this
time n=15 (since the teacher is choosing from 15
girls only) gives us the answer,

P(15,8)= 259,459,200

49



Rules of Counting

Theorem 10.4: The number of distinct r-
combinations that can be formed from the n distinct

elements of set Z is:
C(n,r)= P(n,r)/r! = n!/(n-1)'r!

50
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Examples of Combinations

1. In a statistics exam, a student has a choice of 8
questions out of 10. In how many ways can he
choose a set of 8 questions if he chooses arbitrarily?

>. Find the number of ways of selecting the 6 winning
numbers in the original version of the game of lotto.

5. Consider the game of poker where a player is given 5
cards.

a) How many 5-card poker hands (unordered) are
there?

b) How many of these 5-card poker hands contain
exactly 3 hearts?

51



Solution to Example No. 3:

a) In this problem, we ignore the order in which the 5
cards were dealt. The answer to the question is C(52,5).
By Theorem 10.4, there are as many as poker hands
2,598,960 poker hands.

b) The experiment can be divided into 2 stages: (i) the
selection of the hearts; and then, (ii) the selection of the
non-hearts. Then by the basic principle of counting, there
are n, x n, poker hands containing exactly 3 hearts where n,
= number of ways of selecting 3 hearts and n, = number of
ways of selecting 2 non-hearts. By Theorem 10.4, n1 =
C(13,3) = 13!/10!13! = 286 and n2 = C(39,2) = 39!/37!2! = 741.
and . Thus, the answer is (286)(741)=211,926.

52



eorem : if n objects are not

anymore distinct from each other.

® Theorem 10.5: The number of distinct ways of
arranging n objects of which n, are of one kind, n, are
of a second kind, ..., n, are of a k™ kind is:

n!
n!xn,Ix...xn!

k
where > n, =n
s

5]



Example for Theorem 10.5:

Consider our favorite word, “STATISTICS”. How many
distinct ways can we arrange the letters contained in
this word.

Solution:

54



Example for Theorem 10.5

In how many different ways can 3 red, 4 yellow, and 2
blue bulbs be arranged in a string of Christmas tree
lights with 9 sockets?

E55]
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Theorem 10.6: General Partitioning

The number of distinct ways of grouping n distinct
objects into k groups such that n, objects belong in the
first group, n, objects belong in the second group,..., n;
objects belong in the k" group is:

n!
n!xn,Ix...xn!

Kk
where > n, =n
=%
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* Example 10.21: How many ways can we assign twenty
new applicants into the 5 committees of an
organization so that each committee will get 4 new
applicants each?

e Solution:

57



* Do Exercises for Section 10.4
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Function

Theorem 10.7:
If A is an event then P(A¢) =1 - P(A).

Theorem 10.8:
If A and B are events then P(AnB¢) = P(A) - P(AnB).

Theorem 10.9. Additive Law of Probability
If A and B are events then P(AUB) = P(A) + P(B) - P(AnB).

59
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Probability Function

* Example 10.22: Suppose A and B are events for which
it is known that P(A)=0.6, P(B)=0.7 and P(AnB)=0.4.
We can then compute the probabilities of other events
using Theorems 10.7 - 10.9.

* P(AUB) =P(A) + P(B) - P(AmB) = 0.6 + 0.7 — 0.4 = 0.9.
* P(AnB¢) =P(A) - P(AnB) =0.6 - 0.4 = 0.2.

* P(BnA¢) = P(B) - P(AnB) =0.7-0.4=0.3

* P((AnB)¢) =1- P(AnB) =1-0.4=0.6

* P((AUB)¢) =1-P(AUB) =1-0.9 =0.1

60



Remarks:

® The method of computing for the probabilities of
events using these theorems is called the event-
composition method.

* As the name implies, the probabilities are computed
by expressing the event of interest as a composition of
other events.

61
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* Example 10.23: The probability that a randomly
selected student passes Stat 101 is 0.60, and the
probability that he passes English 11 is 0.85. If the
probability that he passes at least one of the two

courses 1S 0.95,
* what is the probability that the selected student passes
both courses?

* what is the probability that he will fail both Stat 101
and English 117

62
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Solution to Example:

Let A=event that selected student passes Stat 101
B=event that selected student passes English 11

Given: P(A)=0.60 P(B)=0.85 P(AUB)=0.95

Find P(AnB). Using Theorem 10.9, we have

P(AnB) = P(A) + P(B) - P(AUB) = 0.60 + 0.85 - 0.95 =0.5

Find P(A°~B¢) = P(AUB)¢. Using Theorem 10.7, we have
P(AUB)¢=1-P(AUB) =1-0.95 = 0.05

63



Example:

In the toss of a fair coin 4 times, what is the
probability of no head in the toss? At least one head?

64



* HW: Do exercises for Section 10.5

65
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10.6 Conditional Probability

® Definition 10.16

* Let A and B be two events where P(B)>o0. The
conditional probability of event A given the
occurrence of event B, denoted by P(A|B) (read as
“probability of A given B) is:

P(AN B)

-
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* Example : The probability that a regularly scheduled

flight departs on time is P(D) = 0.83, the probability
t

hat it arrives on time is P(A) = 0.92, and the probability

.

hat it departs and arrives on time is P(D1A) = 0.78.

Find the probability that a plane
* (a) arrives on time given that it departed on time, and
* (b) departed on time given that it has arrived on time.

69



! pecial Theorems on Conditional

Probabilities

* The conditional probability is also a probability
function so it enjoys all of the properties of a
probability function. Specifically, suppose B is an
event satisfying the condition that P(B)>o then,

* P(J|B) = o.
*IfA, A, .., and A are mutually exclusive events then
P(A LA, U...UA |B)=P(A,|B) +P(A,|B) + ... + P(A,|B).

70
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ecial Theorems on Conditional
Probabilities

* The conditional probability is also a probability
function so it enjoys all of the properties of a
probability function. Specifically, suppose B is an
event satisfying the condition that P(B)>o then,

* If A is an event then P(A¢|B) =1 - P(A|B).
* If A and A, are events then
P(A, N A5|B)= P(A[B) - P(A, N A,|B).
* If A and A, are events then
P(AUA,[B) = P(A,|B) + P(A,|B)- P(A,NA,|B).
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Example:

* Example 10.29: In example 10.23, the probability
that the randomly selected student passes Stat 101
is 0.60, the probability that he passes English 11 is
0.85, and the probability that he passes at least one
of the two courses is 0.95. What is the probability
that the selected student fails English 11 given that
he failed Stat 1017
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Solution to Example 10.29

Solution:

let A =event that selected student passes Stat 101
B =event that selected student passes English 11

We want P(B¢|A°).

In example 10.25, we have already computed the probability
that the selected student passes English 11 given that he
failed in Stat 101 as P(B|A‘g= 0.875.

Then, we can just use the property of the conditional
probability as a probability function to compute for P(B<Ac).

P(B¢|A¢) =1- P(B|A®) =1 - 0.875 = 0.125.

Y]



! !Eeorem 10.10. Theorem of Total

Probabilities

* If {B, B,,..., B} is a collection of mutually exclusive
events wherein each event has a non-zero probability
and

Q =B UB,uU...UB_, then for any event A,

P(A)= 3 P(AIB,)P(B))

that is,
P(A) = P(A|B,)P(B,)+P(A|B,)P(B,)+...+.P(A|B,)P(B,)
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Corollary to Total Probabilities

Since events B and B¢ are mutually exclusive events and
BUB=Q) then applying the Theorem of Total
Probabilities, we have:

P(A) = P(A|B)P(B) + P(A|B¢)P(Be).

7453
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ample 1:
Probability

Three members of a private country club have been
nominated for the office of president. The probability
that Mr. Acusta will be elected is 0.3, the probability
that Mr. Bautista will be elected is 0.5, and the
probability that Ms. Catral will be elected is o.2.
Should Mr. Acusta be elected, the probability for an
increase in membership fees is 0.8. Should Mr.
Bautista or Ms. Catral be elected, the corresponding
probabilities for an increase in fees are 0.1 and o0.4.
What is the probability that there will be an increase
in membership fees?

el )
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ion: Consiaer
following events:

A: membership fees are increased,
Bi: Mr. Acusta is elected

B2: Mr. Bautista is elected

B3: Ms. Catral is elected

Applying the rule of elimination, we can write
P(A) = P(B1)P(A/B1) + P(B2)P(A/B2) + P(B3)P(A/B3)

L



Solution:

We find that the three branches given the probabilities

P(B1)P(A/B1) = (0.3)(0.8) = 0.24,

P(B2)P(A/B2) = (0.5)(0.1) = 0.05

P(B3)P(A/B3) = (0.2)(0.4) = 0.08
And hence

P(A) = 0.24 + 0.05 + 0.08 = 0.37
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Continuation of Problem:

* Suppose that we now consider the problem of finding
the conditional probability P(B3/A). In other words, if
it is known that membership fees have increased, what

is the probability that Ms. Catral was elected president
of the club?

* Questions of this type can be answered by using the
following theorem called Bayes’ rule:

79



Theorem

* If {B, B,,..., B_} is a collection of mutually exclusive
events wherein each event has a non-zero probability
and Q =B UB,uU...UB_, then for any event A for which
P(A)>o,

P (A |B)P(By,

P(B, | 4) = n
k | o P(A |B;)P(B;)

80
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Corollary to Bayes’ Theorem

* Since events B and B¢ are mutually exclusive events
wherein each event has a nonzero probability and

B U B¢ = ) then applying Bayes’ Theorem, we have

P(A|B)P(B)
P(A|B)P(B) + P(A|B)¢P(B°)

P(B|A) =

81
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Example2:

* With reference to Example 1, if someone is considering
joining the club but delays his decision for several
weeks only to find out that the fees have been

increased, what is the probability that Ms. Catral was
elected president of the club?

Solution: Using Bayes’ theorem to write

P(B3/A) = P(B3)P(A/B3)
P(B1)P(A/B1) + P(B2)P(A/B2) + P(B3)P(A/B3)

82
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Continuation of Solution:

* And then substituting the probabilities calculated in
Example 1, we have

P(B3/A}- 038 = 8/37
0.24 + 0.05 + 0.08

In view of the fact that fees have increased, this result

suggests that Ms. Catral is probably not the president
of the club.
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Notes on Theorem 10.10 & 10.11

* Both theorems require the same conditions that

{B1, B2, . . ., Bn} is a collection of mutually exclusive
events wherein each event has a nonzero probability
and Q=B1UB2U...UBn. These conditions imply
that each time we perform the experiment, exactly one
of the events Bi, B2, ..., Bn will occur.

We can visualize this using the Venn Diagram shown
in the next page (Figure 10.4).
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* FIGURE 10.4. VENN DIAGRAM WHERE EVENTS B, B,, B,, B,,
B,, B¢ ARE MUTUALLY EXCLUSIVE EVENTS AND
B,UB,U...UB=Q. Usually, the B/s are DEFINED IN TERMS OF
THE FIRST STAGE OF THE EXPERIMENT WHILE EVENT A IS
DEFINED IN TERMS OF THE SECOND STAGE OF THE
EXPERIMENT.
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* The theorem of total probability and Bayes’ theorem
are useful when there are two stages in an experiment.

Oftentimes, we specity the events B, B, ..., B in terms
of the first stage of the experiment while we specify
event A in terms of the second stage of the experiment.

We can then view both theorems as a more natural
way of computing probabilities because the formulas
tell us that we first need to consider all the possible
ways in which the first stage of the experiment can
occur in order to facilitate the computation of the
probability of an event described in terms of the
second stage of the experiment.
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iostatistics

* Statistics is very useful in analyz

ing biological or
medical data. This area of statistics is called
biostatistics.

* One special interest in biostatistics is to determine the
effectiveness of a medical test in detecting a particular

disease.

* The sensitivity of a given test is the probability of

correctly diagnosing a person w
while the specificity of a test is t!

ho has the disease
he probability of

correctly diagnosing a person w

ho does not have the

disease. Naturally, we would want both the sensitivity

and specificity of a test to be very close to 1.
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"Example

* Suppose that it is known that only 0.005 of the people
in a town have diabetes. A diabetes test is available.
The sensitivity of this test is 0.999 and its specificity is
0.995. Suppose a person from this town is selected at
random and the diabetes test was performed.

a) What is the probability that the test will indicate that
he has diabetes?

b) If the test shows that the person has diabetes, what is
the probability that the test is correct, that is, he really
does have diabetes?

c) If the test shows that the person does not have
diabetes, what is the probability that the test is correct,
that is, he really does not have diabetes? =
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.50

lution to Example 10.30

* We can view the experiment involved in this probability
problem as being performed in two stages.

o T
OT

he first stage involves the selection of the person and
bserving whether or not he has diabetes.

o T

he second stage involves testing the selected person

and observing the outcome of the test.

Let

A = event that the test of the selected person shows
he has diabetes

B = event that the selected person actually has
diabetes
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0.30

* Given: P(B) = 0.005. P(B¢) =1-P(B) = 0.995.

* We can express both the sensitivity of the test and
specificity of the test as conditional probabilities.

* The sensitivity of the test is given and we can express it
as P(A|B)=0.999.

* The specificity of test is also given and we can express
it as P(A¢|B¢)=0.995.
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!on’tof Solution to Ex. 10.30

» Using the property of the conditional probability as a
probability function, we can compute:

P(A¢|B)=1- P(A|B) = 0.001
P(A|B¢) =1 - P(A¢|B¢) = 0.00s5.

Find P(A). We solve this by using the corollary of the
Theorem of Total Probability.

P(A) = P(A|B)P(B) + P(A|B<)P(B°)
= (0.999)(0.005) + (0.005)(0.995) = 0.00997
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Con’t of Solution to Ex. 10.30

b) Find P(B|A). We solve this by using the corollary of
Bayes’ Theorem.

P(B A) = P(A| B)P(B) _(0999)(0.005) _ D
P(A|B)P(B)+P(A|B)P(B®)  0.00997 '

c) Find P(B¢|A¢). We also solve this by using the
corollary of Bayes’ Theorem.

PE | /) PA'|B)P(B) _ 00x™
P(A'|BAB)+P(A|B)R(EB’)  (0.001)(0.005)-+(:9%)(.9%)
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Note on Example 10.30

* We can be more confident about the result of the test
if the result of the test were negative than if the result
of the test were positive.

* This is because the probability is already very close to 1
that a person really does not have diabetes if the result
of the test were negative as compared to only a 50-50
chance that a person really has diabetes if the result of
the test were positive.
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* Homework: Do exercises on pp. 323 to 324 (exercises
for section 10.6)
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10.7 Independent Events

Definition 10.17: Independent events

Two events A and B are said to be independent events
if and only if any one of the following conditions is
satisfied:

a) P(A|B) = P(A) if P(B)>o; or,
b) P(B|A) = P(B) if P(A)>o; or,
C) P(AnB) = P(A)xP(B)

Otherwise, the events are said to be dependent.
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PNotes on Independent Events

* The three stated conditions in the definition are
logically equivalent to each other.

e This means that if we know that one of these three
conditions is true then we are assured that the other
two conditions will also be true.

* Likewise, if we know that one of the three conditions is
false then we are also assured that the other two
conditions will also be false.

* This is why it is sufficient to check the veracity of just
one of the three stated conditions in the definition to
determine whether two events are independent or not.
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mr independent events

1. Consider the following events in the toss of a single
die:
A: Observe an odd number
B: Observe an even number

Are A and B independent events?

2. The probability that Robert will correctly answer the
toughest question in an exam is 4. The probability
that Ana will correctly answer the same question is
4/5. Find the probability that both will answer the
question correctly, assuming that they do not copy
from each other.
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xample 10.31: ‘

* Consider the experiment of tossing a fair die twice.
Define

A=event of an even number of dots on the first toss

B=event of observing more than 4 dots on the second toss
C=event of observing less than 6 dots on the first toss

* Using the classical definition of probability, we get the
following probabilities:

P(A)=18/36=1/2 P(B)=12/36=1/3 P(C)=30/36=5/6
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I Example 10.31: *

* Working on the reduced sample space, we get the
following conditional probabilities:

P(A|B)=6/12=1/2 P(A|C)=12/30=2/5
P(B|C)=10/30=1/3

We can then conclude that A and B are independent
events because the first condition, P(A)=P(A|B), is
satisfied.
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!E xample 10.31:

* We can easily verity that the second and third
conditions in the definition are both true.

P(B) is indeed equal to P(B|A).
P(AnB)=P(A)xP(B).

* Events B and C are also independent events since
P(B)=P(B|C).

* However, A and C are dependent events because the
first condition is not satisfied, that is, P(A)=P(A|C).
The computed results indicate that if we know event C
occurred then our assigned probability for event A will
decrease from the original measure of 1/2 to the new

measure of 2/5.
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m,m Independent Events

* By examining the three conditions in the definition
closely, we will notice that the first two stated
conditions are consistent with the layman’s concept of
independence.

* According to these statements, we say that two events
A and B are independent of each other whenever the
conditional probability of A given B is just the same as
the unconditional probability of A, or, the conditional
probability of B given A is just the same as the
unconditional probability of B.
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Notes on Independent Events

* This is just the same as saying that the occurrence of
event B does not affect the assigned probability for
event A, or, the occurrence of event A does not affect
the assigned probability for event B.

* While the first two conditions stated in the definition
give us a clear picture of the concept of independence,
it is the third condition that helps us understand the
importance of independence.
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Notes on Independent Events

* Asstated in the third condition, we only need to know
the individual probabilities of two events in order to
compute the probability that these two events will
occur simultaneously.

* In other words, satisfying the condition of
independence of two events facilitates the
computation of the probability that these events will
occur simultaneously.
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Example 10.32

Suppose A and B are independent events with
P(A)=0.3 and P(B)=0.6. It is easy to compute for the
probabilities of the following events:

a) P(AnB) = P(A)P(B) = (0.3)(0.6) = 0.8
b) P(AUB) = P(A) + P(B) - P(AnB)
= 0.3+ 0.6 —(0.3)(0.6) = 0.72
c¢) P(AnB¢) = P(A) - P(AnB) = 0.3 - (0.3)(0.6) = 0.12
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- Notes on Example 10.32

* Many students confuse independent events with
mutually exclusive events.

* This is probably because both concepts facilitate the
computation of probabilities.

* It should be clear though that these two concepts,
though related, are actually distinct properties.

* If A and B are mutually exclusive events then AnB=C
so that P(AnB) = O.

* Whereas, if A and B are independent events then, by
definition, P(AnB) = P(A)P(B).
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Notes on Example 10.3
* Asaresult, events A and B will be mutually exclusive
and independent events whenever

P(AnB)=P(A)P(B)=0.
* For this condition to be true, we require that at least
one of events A or B has zero probability.

* In fact, if A and B are mutually exclusive events and
both have nonzero probabilities then it is impossible
for them to be independent events at the same time.

* Likewise, if A and B are independent events and both
have nonzero probabilities then it is impossible for
them to be mutually exclusive.
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Example 10.33

Suppose A and B are events with P(A)=0.4 and
P(B)=0.3. Determine P(AnB) and P(AUB) based on
the given assumption.

a) Under the assumption that A and B are
independent events:
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Solution to Example 10.33a)

P(AnB) = (0.4)(0.3) =0.12  (by definition of
independence)

P(AUB) = P(A) + P(B) - P(AnB)
= 0.4+ 0.3 -0.12=0.58

We will notice that P(AnB)#0. This leads us to the
conclusion that AnB#J; that is, A and B are not
mutually exclusive events.
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Solution to Example 10.33 b)

b) Under the assumption that A and B are mutually

exclusive events:

P(AnB) =0 (since AnB= )
P(AUB) =P(A) + P(B) =0.4+0.3=0.7
(by finite additivity)

We will notice that P(AnB) #P(A)xP(B); that is, A and
B are not independent events.
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Notes on Example 10.33:

* An obvious consequence of the independence of
events A and B is the independence of the events A

and Be.

* This is the same as saying that if P(A)=P(A|B) then
P(A)=P(A|Be).

* This implies that if A and B are independent events
then our assigned probability for event A will not
change even if we have information on event B as
regards to whether it occurred or not, since
P(A)=P(A|B)=P(A|B¢) under the assumption of

independence.
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Notes on Example 10.33:

* Aside from events A and B¢, there are other pairs of
independent events whenever A and B are
independent events.

* These are events A€ and B; as well as, events A¢ and B¢.

* We leave the proof of these results as exercises at the
end of this section.
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* Homework: Do pp. 326 to 327 (Exercises for section
10.7)
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T0-8 Random

Distributions

Definition 10.18: Random Variable

A function whose value is a real number that is
determined by each sample point in the sample space
is called a random variable.

An uppercase letter, say X, will be used to denote a
random variable and its corresponding lowercase
letter, x in this case, will be used to denote one of its

values
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Notes on Random Variable

* The addition of the term “random” emphasizes the
requirement that the realized or actual value of the
random variable depends on the outcome of a random
experiment.

* Consequently, it is impossible to predict with certainty
what the realized value of the random variable X will

be.
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Notes on Random Variable

* Since the random variable is a function, as stated in
the definition, then each outcome in the sample space
must be mapped to exactly one real number.

* No sample point can be assigned more than one real
number; nor, can there be a sample point that is not
assigned to any real number.

* This assures us that the random variable X will have
one and only one realized value, whatever the outcome
of the random experiment.
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Example 1

* An experiment consists of tossing a coin 3 times and
observing the result. What are the possible outcomes
and the values of the random variables X and Y, where
X is the number of heads and Y is the number of heads

minus the number of tails?
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Example 2

* A hatcheck girl returns 3 hats at random to 3
customers who had previously checked them. If Jason,
Charlie, and Ohmar, in that order, receives one of the
hats, list the sample points for the possible orders of
returning the hats and find the values m of the
random variable M, that represents the number of
correct matches.
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Read Example 10.34

* Filipinos are so fascinated with elections and the polls
conducted to predict the outcomes of these elections.

* For illustration purposes, let us imagine a very small
barangay consisting of 6 qualified voters.

* Let’s label these voters as A1, A2, A3, A4, As, and A6.
There are two candidates vying for the position, say
Renzo and Sandro.
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Example 10.34

* What we do not know is that voters A1, A2, A3 and A4
have already decided to elect Renzo while voters Asg
and A6 will elect Sandro.

* We only have enough resources to get a sample of size
3.

* We will then use the information from this sample to
predict the outcome of the election.
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Example 10.34

* Suppose we use simple random sampling without
replacement to select our sample of size 3. Our sample
space will contain all the 20 possible combinations of
size 3. The sample points in our sample space are:

o {A1,A2,A3} {A1,A2,A4} {A1,A2,A5} {A1,A2,A6}
{A1,A3,A4} {A1,A3,As5} {A1,A3,A6} {A1,A4,As5}
{A1,A4,A6} {A1,A5A6} {A2,A3,A4} {A2,A3As5}
{A2,A3,A6} {A2,A4,A5} {A2,A4,A6} {A2,A5A6}
{A3,A4,A5} {A3,A4,A6} {A3,A5A6} {A4,As5A6}
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Example 10.34

* Define X=number of voters who will elect Renzo.

X is a random variable because we can map each one of
the enumerated sample point into one and only one
real number.

For instance, if the selected sample were {A1,A2,A3}
then the realized value of X is 3 because all 3 voters in
the sample will elect Renzo; while if the selected
sample were {A4,A5,A6} the realized value of X is 1
because only A4 will elect Renzo.
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Example 10.34

* The realized values of X for the other sample points in
the sample space are as follows:

Sample Point x  Sample Point x Sample Point x  Sample Point X
{A1,A2,A3}) 3 {A1,A2,A4}) 3  {A1,A2,As} 2 {A1,A2,A6} 2
{A1,A3,A4} 3  {A1,A3,A5} 2 {A1,A3,A6} 2 {A1,A4,As} 2
{A1,A4,A6} 2 {A1,As5,A6}) 1 {A2,A3,A4} 3  {A2,A3,A5} 2
{A2,A3,A6} 2 {A2,A4,As} 2 {A2,A4,A6} 2 {A2,A5,A6} 1
{A3,A4,A5} 2 {A3,A4,A6} 2 {A3,A5,A6} 1 {A4,A5,A6} 1

¢ Clearly, the realized value of X depends on which
sample of size 3 we actually select for our study to
predict the outcome of the election
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Notes on Random Variables

* The concept of a random variable will provide us with
a new way of expressing events.

* In particular, we will use the notation, X < x, to express
the event containing all sample points whose
associated value for the random variable X is less than
or equal to x, where x is a specified real number.

* We will use the notation, X > x, to express the event
containing all sample points whose associated value
for X is greater than x.
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Notes on Random Variables

* We will use the notation, a<X<b, to express the event
containing all sample points whose associated value
for X is in between a and b, where a and b are specified
real numbers. And so on.

* Read Example 10.35 - this provides us with
illustrations on how we use the random variable to
express the events whose probabilities we are
interested in
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- Read Example 10.35

Let us use the random variable defined in Example
10.34, X=number of voters who will elect Renzo.
Specity the following events by roster method and
express it in terms of X:

* A = event of selecting a sample with 1 voter electing
Renzo

* B= event of selecting a sample with more than 2 voters
electing Renzo

* C= event of selecting a sample with at least 1 voter
electing Renzo

* D= event of selecting a sample with 5 voters electing

Renzo
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Solution to Exercise 10.35

* A={{A1,A5,A6}, {A2,A5,A6),{A3,A5,A6), {A4,A5,A6}}

We can express event A in terms of the random
variable, X, as X=1 because this contains all of the
sample points in 2 whose value for X is equal to 1.

* B ={{A1,A2,A3}, {A1,A2,A4}, {A1,A3,A4}, {A2,A3,A4}}

We can express event B in terms of the random
variable, X, as X>2 because this contains all of the
sample points in (2 whose value for X is greater than 2.
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Solution to Exercise 10.35

e C= () = sure event.

We can express event C as X > 1.

* D=0 = impossible event.
We can express event D as X = 5.
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Notes on Example 10.35

e It is important to note that we used capital Latin
letters to denote events and random variables, as well.

* Although we are using the same notation for events
and random variables, we have to remember that these
are actually two distinct though related concepts.
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Notes on Example 10.35

* In Example 10.35, we used X to denote a random
variable, while we used A, B, C and D to denote the
events themselves.

® The random variable, X, by itself is not an event. The
events in Example 10.35 are X=1, X>2, X>1 and X=5.
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Notes on Example 10.35:

* Let us not forget that we will view the characteristic of
interest in a particular study as a random variable
whose value depends on the outcome of a random
experiment.

* In many studies, researchers aim to come up with a
probabilistic/stochastic model that they can use to
describe the essential properties of this random
variable. One tool that researchers use in modeling is
the cumulative distribution function of the random
variable
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Definition of CDF

Definition 10.19

* The cumulative distribution function (cdf) of a
random variable X, denoted by F(.) is a function
defined for any real number x as

F(x) = P(X <x)
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Notes on the CDF

e Since the CDF is defined in terms of a probability
function then its value will range from o to 1, inclusive
of endpoints

¢ It is a non-decreasing function. This means that it is
impossible for the value of the CDF, F(x), to decrease
as the value of x increases.

® Thus, the graph of the CDF of a random variable in any
interval of the real line either remains flat or it goes
up, but it will never go down.

F3s



Notes on the CDF

» Every random variable will have one and only one CDF.

* We can use the CDF to compute for the probability of
any event that is expressed in terms of the random
variable.

- Example: X isthe IQ of a selected person from the
population and we know the CDF of X then we can
determine the probability of selecting a person whose
IQ is below average or the probability of selecting a
person whose IQ is greater than 100.

 The behavior of the CDF of a random variable depends
on the type of random variable.
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‘ 4 types of random variables

e discrete random variables
e continuous random variables
e singular continuous random variables

* mixed random variables.
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g ace and Discrete an%om

Variable

Definition 10.20

- If'a sample space contains a finite number of sample
points or has as many sample points as there are
counting/natural numbers then it is called a discrete
sample space.

Definition 10.21

» A random variable defined over a discrete sample
space is called a discrete random variable.
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and Discrete Random Variable

+ The sample space used to define a discrete random
variable either has a finite number of sample points,
or, has as many sample points as there are counting
numbers.

 The discrete random variable can contain infinitely
many sample points so long as this collection has a
one-to-one correspondence with the collection of
counting numbers.
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Read Example 10.36

® The random variable defined in Example 10.34,
X=number of voters who will elect Renzo is an example
of a discrete random variable.

 This is because the sample space used to define it
contains a finite number of sample points.

* Remember that the sample space that we specified in
Example 10.34 contains 20 sample points.
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Example™
of Discrete Sample Space:

Example 10.37: Consider the experiment of tossing a coin until a
head comes up. Define its sample space as follows:

Q={H, TH, TTH, TTTH, TTTTH, ...}

D1€E

Notice that this sample space contains infinitely many sample
points but it has a one-to-one correspondence with the set of
counting or natural numbers.

To show this, we can define the correspondence by counting the
number of tosses required to perform the experiment. By doing
so, we will be able to pair the outcome H Witﬁ 1 because this
outcome required only 1 toss. Then, we will pair TH with 2, TTH
with 3, and so on. We see that we are able to match each
outcome with a unique counting number, and vice versa. We can
then conclude that €2 has as many sample points as there are
counting numbers.
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Variable

« Random variables defined on this sample space are
discrete random variables.

- Examples of such random variables are X=number of
tails and Y=number of tosses. The values of Xand Y
for the first 5 sample points will then be as follows:

Sample Point X y

° H o) 1
TH 1 2

TTH 2 3

TTTH 3 4

TI'TTH 4 5
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 There are many subsets of the set of real numbers that
have a one-to-one correspondence with the set of
counting numbers.

- Examples of discrete sample space:
- the set of all positive integers
- the set of non-negative integers
- the set of all integers
- the set of even numbers
- the set of odd numbers
- the set of rational numbers.
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correspondence between an
the set of counting numbers?

+ Answer: NO!

- Example, the set of all real numbers does not have a
one-to-one correspondence with the set of counting
numbers.

- All closed, open, half-open and unbounded intervals
of real numbers such as [0,1], (0.2, 0.5), (5, 100], (1, )
do not have a one-to-one correspondence with the set
of counting numbers.
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Probability Mass Function

Definition 10.22

* The probability mass function (PMF) of a discrete
random variable, denoted by f{(.), is a function defined
for any real number x as:

f(x) = P(X = x).

* The values of the discrete random variable X for which
f(x)>o are called its mass points.
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Notes on PMF

* Just like the CDF, the probability mass function of a
discrete random variable X can be used to compute for
the probability of any event that is expressed in terms
of X.

* We can also use the PMF to compute important
summary measures such as the mean and the standard
deviation.
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variable X (By classical defn of probability to compute for
P(X=x)

Step 1. Identify the mass points of X. The mass points of
X are actually the possible values that X could take on
because these are the points where P(X=x) will be
nonzero. In other words, the set of mass points of X is
the range of the function, X.

Step 2. Determine the event associated with the
expression, X=x.

Step 3. Compute for the probability of this event.
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* Construct the probability mass function of the random
variables X and Y
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Recall Example 2: Hatcheck girl

* Construct the probability mass function for the
random variable M.
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Let X=number of voters who will elect
Renzo, as defined in Example 10.34.

* The experiment involves the selection of a sample of size 3
using simple random sampling without replacement.

* This means that we will be selecting the sample in such a
way that all of the 20 possible samples will be given the
same chances of selection.

* We can then use the classical definition of probability
because the outcomes in the sample space are
equiprobable.
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Event associated with X=x
X
1 {{A1,A5,A6}, {A2,A5,A6},{A3,A5,A6}, {A4,A5,A6}}

> {{ALA2,A5}, {A1,A2 A6}, {A1,A3,A5}, {A1,A3,A6},
{A1,A4,A5}, {A1,A4,A6}, {A2,A3,A5},
{A2,A3,A6},{A2,A4,A5}, {A2,A4,A6}, {A3,A4,A5),
{A3,A4,A6}}

3 {1A1L,A2,A3}), {A1,A2,A4}, {A1,A3,A4}, {A2,A3,A4}}
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* Using the classical definition of probability, we can
compute:

. f(1) = P(X=1) = P({{A1,A5,A6},
{A2,A5,A6},{A3,A5,A6}, {A4,A5,A6}} = 4/20=1/5.

o f(2)=P(X=2)=12/20=3/5.
. f(3)=P(X=3) = 4/20=1/5.
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* The probability mass function of X is:

-

1/5  when x=1
3/5 when X =2
1/5 when X =3
0 for all other real numbers

.

f(x)=+
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PMF in table form

X 1 2 3
f(x) 15 35 15

® The sum of the pmf must always be equal to 1.
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! sing pmf to determine the probability

of an event

* If we want to evaluate P(a < X < b) then we can
easily do this using the pmf by following these
steps:

* Step1.  Identify the mass points, x, that are
included in the interval of interest.

» Step 2.  Use the pmf to determine the value of
P(X=x) for each one of the mass points identified
in Step 1.

» Step3.  Get the sum of all the values derived in
Step 2.
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Example 1: toss a coin 3 times

Find the following:
a) P(X<3)

b) PG=X<3)

c) P(X>1)
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! ead Example 10.39 - Example of Using

pmf for Computing Probabilities

Example 10.39: Use the pmf that we derived in Example
10.38 to determine the following probabilities:

a) P(X<3) b) P2<X<5) ¢) P(X>2)
Solution:

a) P(X<3) = P(X=1) + P(X=2) =4/5.

b) P(2<X<5)=P(X=2)+P(X=3) =4/5.

c) P(X>2)=P(X=3)=1/s.
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Probability Density Function

Detfinition 10.23

* The probability density function (pdf) of a
continuous random variable X, denoted by {(.), is a
function that is defined for any real number x and
satisty the following properties:

°*a) f(x)=oforallx;

* b) the area below the whole curve, f(x), and
above the x-axis is always equal to 1; and,

*c) P(a=X=<b)isthearea bounded by the curve
f(x), the x-axis and the lines x=a and x=b.
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* For a continuous random variable, the P(X=a)=o for
any real number, a.

* Thus, P(X<a) = P(X<a) + P(X=a) = P(X<a). For the
same reason, we can also say that whenever X is a
continuous random variable:

P(a<X<b)=P(a<X<b)=P(a<X<b)=P(a<X<b).
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Area of shaded region

* Rectangle = length x width
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Example of PDF: skip

® A continuous random variable X that can assume
values between o and 2 has a density function given by

—

fix)=| o5 foro=x<>

0 otherwise

—

Find the following probabilities:
a Pa<X<2)
b. P(X>15)

161



Skip

* Example 10.40: The pdf of a continuous random
variable, X is given by

* Find the following probabilities:

o a) P(4 <X <6.5)
b) P(X > 5)
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Solution: Figure 10.7 shows the graph of the pdf of
the random variable X and the respective regions
of interest. Since the shaded regions are always in
the form of a rectangle, we will use the formula for
the area of a rectangle given by: Area = Length x

Width.
*a) Length=0.25and Width=2.5
P(4 <X < 6.5) = (0.25)(2.5) = 0.625
*b) Length = 0.25 and Width=2
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* Do exercises for Section 10.8 (nos. 1, 3, and 5)

165



Random Variable

Definition 10.24

Let X be a discrete random variable with probability
mass function:

X X, X X,

f(x)=P(X=x) fix) f(x) .. f(x)

The expected value of X, also referred to as the
mean of X is:

EX)=p=xflx) i xflx) .  +xfx)=Xxflx)
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Examples of Expected Values

I

Find the mean of the random variables X and Y of
Experiment 1 (Toss of a coin 3 times).

Find the expected number of correct matches in
Experiment 2 (Hatcheck girl).

In a gambling game, a man is paid P50 if he gets all
heads or all tails when 3 coins are tossed, and he pays
out P30 if either 1 or 2 heads show. What is his
expected gain?
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Theorem 10.12

Let X be a discrete random variable with probability
mass function given by:

X X X, X,

f(x)=P(X=x) fix) f(x) .. f(x)

Suppose Y=g(X) is a discrete random variable then the
expected value of g(X) is

E(g(X)) = Yg(xi)f(xi)
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Example 10.44:

A used car dealer finds that in any day, the probability
of selling no car is 0.4, one car is 0.2, two cars is 0.15, 3
cars is 0.10, 4 cars is 0.08, five cars is 0.06 and six cars
is 0.01. Let X=number of cars sold and let Y=500+1500X
represent the salesman’s daily earnings. Find the
salesman’s expected daily earnings.
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Definition 10.25

Let X be a random variable with mean, p. The

variance of X, denoted by 62 or Var(X), is defined as
o2 = Var(X) = E(X - p)2. The standard deviation of X
is the positive square root of the variance.
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Definition 10.26

Let X be a discrete random variable with pmf given by:
X X X . X

1 2 L) g

f(x)=P(X=x) fix) f(x) .. f(x)

The variance of X is:
02 = Var(X) = E(X - p)2 = Y. (xi-p)>f(xi)
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Theorem 10.13

If X is a random variable then the Var(X) = E(X?) - p2.
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Example:

In experiment number 1, find the variance of X using
definitional and computation formulas.
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“Properties 0
Variance

Let X and Y be random variables (discrete or continuous)
and let a and b be constants.

1. E(@X+b)=aE(X)+b
Special Cases: a. If b = o, then E(aX) = aE(X)
b. Ifa=o, then E(b) =b
5. E(X+Y)=E(X) + E(Y)
E(X -Y) = E(X) - E(Y)
3. E(XY) = E(X)E(Y) if X and Y are independent
4. E[X-E(X)]=o0
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"Properties 0

Variance

Let X and Y be random variables (discrete or continuous)
and let a and b be constants.

5. Var(aX + b) = a?Var(X)
Special Cases:
a) if b = o, then Var(aX) = a*Var(X)
b) ifa = o, then Var(b) = o

6. If Xand Y are independent then
Var(X +Y) = Var(X) + Var(Y)
Var(X -Y) = Var(X) + Var(Y)
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ple: Prop
and Variance

I[f Xand Y are independent random variables with
E(X) =3, E(Y) = 2, Var(X) = 2 and Var(Y) =1, find
a) E(3X+5)

b) Var(3X + 5)

c) E(XY)

d) Var(3X-2Y)
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Some Notes:

We also use the concept of expectation to define
measures of skewness and kurtosis of the pmf of a
discrete random variable and the pdf of a continuous
random variable.

The degree of asymmetry of a distribution is often
measured using the coefticient of skewness, M,/ 03,
where p= E(X - pu)3. Its interpretation is the same as
other measures of skewness. In general,

M,/03 < o - skewed to the left
M,/03 > o - skewed to the right

3o i
l,/03 = 0 — symmetric -



Some Notes:

The “peakedness” of the distribution, on the other
hand, is often measured by the coefficient of kurtosis,
u,/c4, where p =E(X - p)4. In general,

u,/c* <3 - platykurtic
u,/c* >3 - leptokurtic

u,/c* =3 - mesokurtic
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Homework

* Do exercises for Section 10.9, nos. 1, 2, 3 and 5.
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