# Introduction to Correlation Analysis and Simple Linear Regression 

Josefina V. Almeda

Stat 115
2014

## Goals

## After this, you should be able to:

- Calculate and interpret the simple correlation between two variables
- Determine whether the correlation is significant
- Calculate and interpret the simple linear regression equation for a set of data
- Understand the assumptions behind regression analysis
- Determine whether a regression model is significant


## Goals

## (continued) <br> After this, you should be able to:

- Calculate and interpret confidence intervals for the regression coefficients
- Recognize regression analysis applications for purposes of prediction and description
- Recognize some potential problems if regression analysis is used incorrectly
- Recognize nonlinear relationships between two variables


## Scatter Plots and Correlation

- A scatter plot (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
-Only concerned with strength of the relationship
-No causal effect is implied


## Scatter Plot Examples



Curvilinear relationships



## Scatter Plot Examples

(continued)


## Scatter Plot Examples

(continued)


## Correlation Coefficient

- The population correlation coefficient $\rho$ (rho) measures the strength of the association between the variables
- The sample correlation coefficient $r$ is an estimate of $\rho$ and is used to measure the strength of the linear relationship in the sample observations


## Features of $\rho$ and $r$

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker the linear relationship


## Examples of Approximate $r$ Values



# Calculating the Correlation Coefficient 

## Sample correlation coefficient:

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\left[\sum(x-\bar{x})^{2}\right]\left[\sum(y-\bar{y})^{2}\right]}}
$$

or the algebraic equivalent:

$$
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}\right]}}
$$

where:
$r=$ Sample correlation coefficient
$\mathrm{n}=$ Sample size
$x=$ Value of the independent variable
$y=$ Value of the dependent variable

## Calculation Example

| Tree <br> Height | Trunk <br> Diamete <br> $\mathbf{r}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{y}$ | $\mathbf{x}$ | $\mathbf{x y}$ | $\mathbf{y}^{\mathbf{2}}$ | $\mathbf{x}^{\mathbf{2}}$ |
| 35 | 8 | 280 | 1225 | 64 |
| 49 | 9 | 441 | 2401 | 81 |
| 27 | 7 | 189 | 729 | 49 |
| 33 | 6 | 198 | 1089 | 36 |
| 60 | 13 | 780 | 3600 | 169 |
| 21 | 7 | 147 | 441 | 49 |
| 45 | 11 | 495 | 2025 | 121 |
| 51 | 12 | 612 | 2601 | 144 |
| $\Sigma \mathbf{= 3 2 1}$ | $\Sigma=\mathbf{7 3}$ | $\Sigma=\mathbf{3 1 4 2}$ | $\Sigma=\mathbf{1 4 1 1 1}$ | $\Sigma=\mathbf{7 1 3}$ |

## Calculation Example



## Excel Output

## Excel Correlation Output

Tools / data analysis / correlation...

|  | Tree Height | Trunk Diameter |
| :--- | ---: | ---: |
| Tree Height | 1 |  |
| Trunk Diameter | 0.886231 |  |
|  |  |  |
| Correlation between |  |  |
| Tree Height and Trunk Diameter  |  |  |



## Significance Test for Correlation

- Hypotheses

$$
\begin{array}{ll}
H_{0}: \rho=0 & \text { (no correlation) } \\
H_{A}: \rho \neq 0 & \text { (correlation exists) }
\end{array}
$$

- Test statistic

$$
-t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}
$$

(with $\mathrm{n}-2$ degrees of freedom)


## Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the .05 level of significance?

$$
\begin{gathered}
\begin{array}{cc}
H_{0}: \rho=0 & \text { (No correlation) } \\
H_{1}: \rho \neq 0 & \text { (correlation } \\
\text { exists) } \\
\alpha=.05, & \mathrm{df}=8-2=6 \\
\mathrm{t}=\frac{\mathrm{r}}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}=\frac{.886}{\sqrt{\frac{1-.886^{2}}{8-2}}}=4.68 \\
\end{array} \\
\hline
\end{gathered}
$$



## Example: Test Solution


d.f. $=8-2=6$


## Decision:

Reject $\mathrm{H}_{0}$

## Conclusion:

There is evidence of a linear relationship at the $5 \%$ level of significance

## Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain
Independent variable: the variable used to explain the dependent variable

# Simple Linear Regression Model 

- Only one independent variable, x
- Relationship between $x$ and $y$ is described by a linear function
- Changes in y are assumed to be caused by changes in $x$


## Types of Regression Models

Positive Linear Relationship


Negative Linear Relationship


Relationship NOT Linear


No Relationship


## Population Linear Regression

The population regression model:


## Linear Regression Assumptions

- Error values ( $\varepsilon$ ) are statistically independent
- Error values are normally distributed for any given value of $x$
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the $y$ variable is linear


## Population Linear Regression



## Estimated Regression Model

The sample regression line provides an estimate of the population regression line


The individual random error terms $\mathrm{e}_{\mathrm{i}}$ have a mean of zero

## Least Squares Criterion

- $b_{0}$ and $b_{1}$ are obtained by finding the values of $b_{0}$ and $b_{1}$ that minimize the sum of the squared residuals

$$
\begin{aligned}
\sum \mathrm{e}^{2} & =\sum(\mathrm{y}-\hat{\mathrm{y}})^{2} \\
& =\sum\left(\mathrm{y}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}\right)\right)^{2}
\end{aligned}
$$

## The Least Squares Equation

- The formulas for $b_{1}$ and $b_{0}$ are

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

algebraic
equivalent:

$$
b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}
$$

and

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

## Interpretation of the Slope and the Intercept

- $b_{0}$ is the estimated average value of $y$ when the value of $x$ is zero
- $\mathrm{b}_{1}$ is the estimated change in the average value of $y$ as a result of a one-unit change in $x$


## Finding the Least Squares Equation

- The coefficients $b_{0}$ and $b_{1}$ will usually be found using computer software, such as Excel or Minitab
- Other regression measures will also be computed as part of computerbased regression analysis


## Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
-Dependent variable $(y)=$ house price in \$1000s
-Independent variable (x) = square feet


## Sample Data for House Price Model

| House Price in $\$ 1000 s$ <br> $(\mathrm{y})$ | Square Feet <br> $(\mathrm{x})$ |
| :---: | :---: |
| 245 | 1400 |
| 312 | 1600 |
| 279 | 1700 |
| 308 | 1875 |
| 199 | 1100 |
| 219 | 1550 |
| 405 | 2350 |
| 324 | 2450 |
| 319 | 1425 |
| 255 | 1700 |

## Regression Using Excel

- Tools / Data Analvsis /

KMicrosoft Excel - 13data.sls


## Excel Output

Regression Statistics


## Graphical Presentation

- House price model: scatter plot and regression line

house price $=98.24833+0.10977$ (square feet)


## Interpretation of the Intercept, $\mathrm{b}_{0}$

house price $=98.24833+0.10977$ (square feet)

- $b_{0}$ is the estimated average value of $Y$ when the value of $X$ is zero (if $x=0$ is in the range of observed $x$ values)
- Here, no houses had 0 square feet, so $b_{0}=$ 98.24833 just indicates that, for houses within the range of sizes observed, $\$ 98,248.33$ is the portion of the house price not explained by square feet


## Interpretation of the Slope Coefficient, $\mathrm{b}_{1}$

house price $=98.24833+0.10977$ (square feet)

- $b_{1}$ measures the estimated change in the average value of Y as a result of a one-unit change in $X$
- Here-, $b_{T}=-1-0 d 77$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size


## Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is $0 \quad\left(\sum(y-\hat{y})=0\right)$
- The sum of the squared residuals is a minimum (minimized $\sum(y-\hat{y})^{2}$ )
- The simple regression line always passes through the mean of the $y$ variable and the mean of the $x$ variable
- The least squares coefficients are unbiased estimates of $\beta_{0}$ and $\beta_{1}$


## Explained and Unexplained Variation

- Total variation is made up of two parts: SST $=$ SSE + SSR

Total sum of Squares

$$
\mathrm{SST}=\sum(\mathrm{y}-\overline{\mathrm{y}})^{2}
$$

$$
\text { SSE }=\sum(y-\hat{y})^{2}
$$

$$
\operatorname{SSR}=\sum(\hat{y}-\bar{y})^{2}
$$

where:
$\bar{y}=$ Average value of the dependent variable
$y=$ Observed values of the dependent variable
$\hat{y}=$ Estimated value of $y$ for the given $x$ value

## Explained and Unexplained Variation

- SST = total sum of squares
- Measures the variation of the $y_{i}$ values around their mean y
- SSE = error sum of squares
- Variation attributable to factors other than the relationship between $x$ and $y$
- $\mathrm{SSR}=$ regression sum of squares
- Explained variation attributable to the relationship between $x$ and $y$


## Explained and Unexplained Variation

(continued)


## Coefficient of Determination, $\mathrm{R}^{2}$

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called $R$-squared and is denoted as $R^{2}$

$$
R^{2}=\frac{S S R}{S S T}
$$

where

$$
0 \leq R^{2} \leq 1
$$

## Coefficient of Determination, $\mathrm{R}^{2}$

## Coefficient of determination

$R^{2}=\frac{S S R}{S S T}=\frac{\text { sum of squares explained by regression }}{\text { total sum of squares }}$

Note: In the single independent variable case, the coefficient of determination is

$$
R^{2}=r^{2}
$$

where:

$$
\mathrm{R}^{2}=\text { Coefficient of determination }
$$

$r=$ Simple correlation coefficient

## Examples of Approximate $R^{2}$ Values



$$
R^{2}=1
$$



$$
R^{2}=1
$$

Perfect linear relationship between $x$ and $y$ :
$100 \%$ of the variation in $y$ is explained by variation in $x$

## Examples of Approximate $R^{2}$ Values


$0<R^{2}<1$
Weaker linear relationship between $x$ and $y$ :


Some but not all of the variation in $y$ is explained by variation in $x$

## Examples of Approximate $R^{2}$ Values


$\mathbf{R}^{2}=0$
No linear relationship between $x$ and $y$ :

The value of $Y$ does not depend on $x$. (None of the variation in $y$ is explained by variation in x )

## Excel Output




|  | Coefficie <br> $n t s$ | Standard Error | t Stat | value | Lower 95\% | Upper <br> $95 \%$ |
| :--- | :---: | ---: | :--- | ---: | ---: | ---: |
|  |  |  |  | 0.1289 |  | 232.0738 |
| Intercept | 98.24833 | 58.03348 | 1.69296 | 2 | -35.57720 | 6 |
| Square Feet |  |  |  | 0.0103 | - |  |

## Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is estimated by

$$
S_{\varepsilon}=\sqrt{\frac{S S E}{n-k-1}}
$$

Where
SSE = Sum of squares error
n = Sample size
$\mathrm{k}=$ number of independent variables in the model

## The Standard Deviation of the Regression Slope

- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
\mathrm{s}_{\mathrm{b}_{1}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum \mathrm{x}^{2}-\frac{\left(\sum \mathrm{x}\right)^{2}}{\mathrm{n}}}}
$$

where:

$$
\mathrm{S}_{\mathrm{b}_{1}}=\text { Estimate of the standard error of the least squares slope }
$$

$$
s_{\varepsilon}=\sqrt{\frac{S S E}{n-2}}=\text { Sample standard error of the estimate }
$$

## Excel Output

Regression Statistics


## Comparing Standard Errors



## Inference about the Slope: t Test

- t test for a population slope
- Is there a linear relationship between $x$ and $y$ ?
- Null and alternative hypotheses
$-\mathrm{H}_{0}: \beta_{1}=0$ (no linear relationship)
$-H_{1}: \beta_{1} \neq 0 \quad$ (linear relationship does exist)
- Test statistic

$$
t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}}
$$ where:

$\mathrm{b}_{1}=\begin{gathered}\text { Sample regression slope } \\ \text { coefficient }\end{gathered}$
$\beta_{1}=$ Hypothesized slope
$\mathrm{s}_{\mathrm{b} 1}=$ Estimator of the standard

$$
\text { d.f. }=\mathrm{n}-2
$$

# Inference about the Slope: t Test 

| House Price <br> in \$1000s <br> $(y)$ | Square Feet <br> $(x)$ |
| :---: | :---: |
| 245 | 1400 |
| 312 | 1600 |
| 279 | 1700 |
| 308 | 1875 |
| 199 | 1100 |
| 219 | 1550 |
| 405 | 2350 |
| 324 | 2450 |
| 319 | 1425 |
| 255 | 1700 |

Estimated Regression Equation: house price $=98.25+0.1098$ (sq.ft.)

The slope of this model is 0.1098 Does square footage of the house affect its sales price?

# Inferences about the Slope: t Test Example 

Test Statistic: $\mathrm{t}=3.329$


## Regression Analysis for Description

## Confidence Interval Estimate of the Slope:

$$
\mathrm{b}_{1} \pm \mathrm{t}_{\alpha / 2} \mathrm{~s}_{\mathrm{b}_{1}}
$$

$$
\text { d.f. }=\mathrm{n}-2
$$

Excel Printout for House Prices:

|  | Coefficient <br> $s$ | Standard <br> Error | $\boldsymbol{t}$ Stat | P-value | Lawer 95\% | Upper <br> $95 \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Intercept | 98.24833 | 58.03348 | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977 | 0.03297 | 3.32938 | 0.01039 | 0.03374 | 0.18580 |

At 95\% level of confidence, the confidence interval for the slope is $(0.0337,0.1858)$

## Regression Analysis for Description

|  | Coefficient <br> $\boldsymbol{s}$ | Standard <br> Error | $\boldsymbol{t}$ Stat | P-value | Lower 95\% | Lper <br> $95 \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Intercept | 98.24833 | 58.03348 | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977 | 0.03297 | 3.32938 | 0.01039 | 0.03374 | 0.18580 |

Since the units of the house price variable is $\$ 1000$ s, we are $95 \%$ confident that the average impact on sales price is between $\$ 33.70$ and $\$ 185.80$ per square foot of house size

This 95\% confidence interval does not include 0.
Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

## Confidence Interval for the Average y, Given x

## Confidence interval estimate for the mean of $y$ given a particular $x_{p}$

Size of interval varies according to distance away from mean, $\bar{x}$

$$
\hat{y} \pm t_{\alpha / 2} s_{\varepsilon} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}}
$$

# Confidence Interval for an Individual y, Given x 

## Confidence interval estimate for an Individual value of $y$ given a particular $x_{p}$



## Interval Estimates for Different Values of $x$



## Example: House Prices

| House Price <br> in \$1000s <br> $(y)$ | Square Feet <br> $(x)$ |
| :---: | :---: |
| 245 | 1400 |
| 312 | 1600 |
| 279 | 1700 |
| 308 | 1875 |
| 199 | 1100 |
| 219 | 1550 |
| 405 | 2350 |
| 324 | 2450 |
| 319 | 1425 |
| 255 | 1700 |

Estimated Regression Equation: house price $=98.25+0.1098$ (sq.ft.)

Predict the price for a house with 2000 square feet

## Example: House Prices

(continued)

## Predict the price for a house with 2000 square feet:

house price $=98.25+0.1098$ (sq.ft.)

$$
=98.25+0.1098(2000)
$$

$$
=317.85
$$

The predicted price for a house with 2000 square feet is $317.85(\$ 1,000$ s $)=\$ 317,850$

## Estimation of Mean Values: Example

## Confidence Interval Estimate for $\mathrm{E}(\mathrm{y}) \mid \mathrm{x}_{\mathrm{p}}$

Find the 95\% confidence interval for the average price of 2,000 square-foot houses
Predicted Price $\hat{Y}_{i}=317.85$ (\$1,000s)

$$
\hat{y} \pm \mathrm{t}_{\mathrm{a} / 2} \mathrm{~s}_{\varepsilon} \sqrt{\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{x}_{\mathrm{p}}-\bar{x}\right)^{2}}{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=317.85 \pm 37.12
$$

The confidence interval endpoints are 280.66-- 354.90, or from \$280,660 -- \$354,900

## Estimation of Individual Values: Example

## Prediction Interval Estimate for $y \mid x_{p}$

Find the $95 \%$ confidence interval for an individual house with 2,000 square feet
Predicted Price $\hat{Y}_{i}=317.85$ (\$1,000s)

$$
\hat{\mathrm{y}} \pm \mathrm{t}_{\alpha / 2} \mathrm{~s}_{\varepsilon} \sqrt{1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{x}_{\mathrm{p}}-\overline{\mathrm{x}}\right)^{2}}{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=317.85 \pm 102.28
$$

The prediction interval endpoints are 215.50-- 420.07, or from \$215,500 -- \$420,070

## Residual Analysis

- Purposes
-Examine for linearity assumption
-Examine for constant variance for all levels of $x$
-Evaluate normal distribution assumption
- Graphical Analysis of Residuals
-Can plot residuals vs. x
-Can create histogram of residuals to check for normality


## Residual Analysis for Linearity



## Residual Analysis for Constant Variance




## Excel Output

| RESIDUAL OUTPUT |  |  |
| ---: | :---: | ---: |
|  | Predicted <br> House <br> Price | Residuals |
| 1 | 251.92316 | -6.923162 |
| 2 | 273.87671 | 38.12329 |
| 3 | 284.85348 | -5.853484 |
| 4 | 304.06284 | 3.937162 |
| 5 | 218.99284 | -19.99284 |
| 6 | 268.38832 | -49.38832 |
| 7 | 356.20251 | 48.79749 |
| 8 | 367.17929 | -43.17929 |
| 9 | 254.6674 | 64.33264 |
| 10 | 284.85348 | -29.85348 |

House Price Model Residual Plot


Square Feet

- Thank you.

