Introduction to Correlation Analysis and Simple Linear Regression

Josefina V. Almeda Stat 115 2014

Goals

After this, you should be able to:

- Calculate and interpret the simple correlation between two variables
- Determine whether the correlation is significant
- Calculate and interpret the simple linear regression equation for a set of data
- Understand the assumptions behind regression analysis
- Determine whether a regression model is significant

Goals

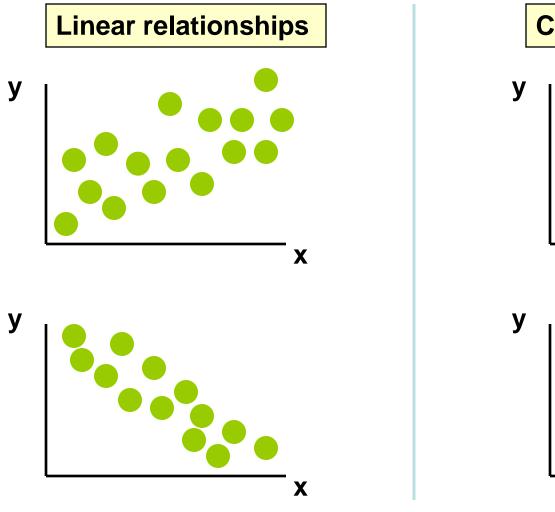
(continued) After this, you should be able to:

- Calculate and interpret confidence intervals for the regression coefficients
- Recognize regression analysis applications for purposes of prediction and description
- Recognize some potential problems if regression analysis is used incorrectly
- Recognize nonlinear relationships between two variables

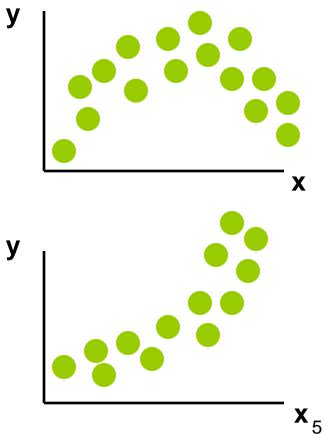
Scatter Plots and Correlation

- A scatter plot (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Only concerned with strength of the relationship
 - -No causal effect is implied

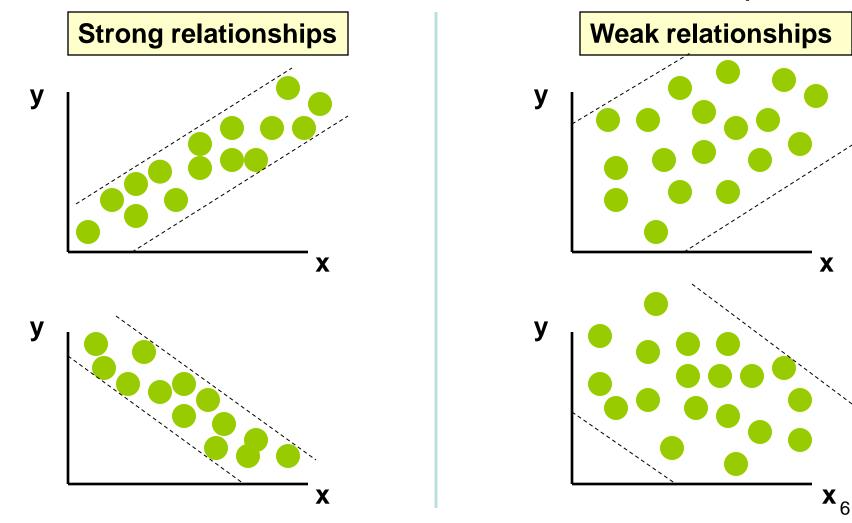
Scatter Plot Examples



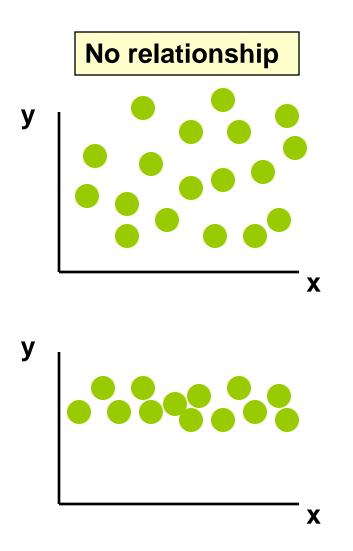
Curvilinear relationships



Scatter Plot Examples



Scatter Plot Examples



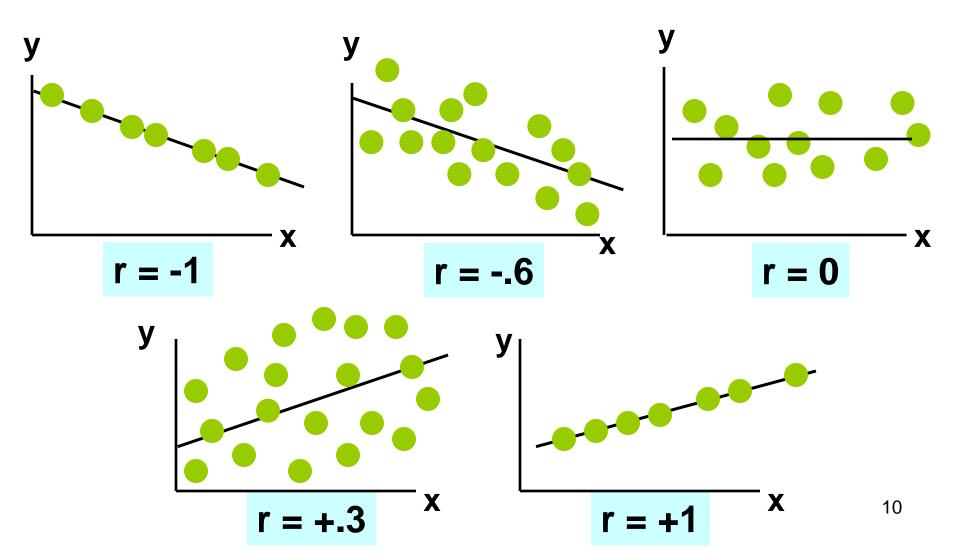
Correlation Coefficient

- The population correlation coefficient
 p (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of p and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Examples of Approximate r Values



Calculating the Correlation Coefficient

Sample correlation coefficient:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

or the algebraic equivalent:

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

where:

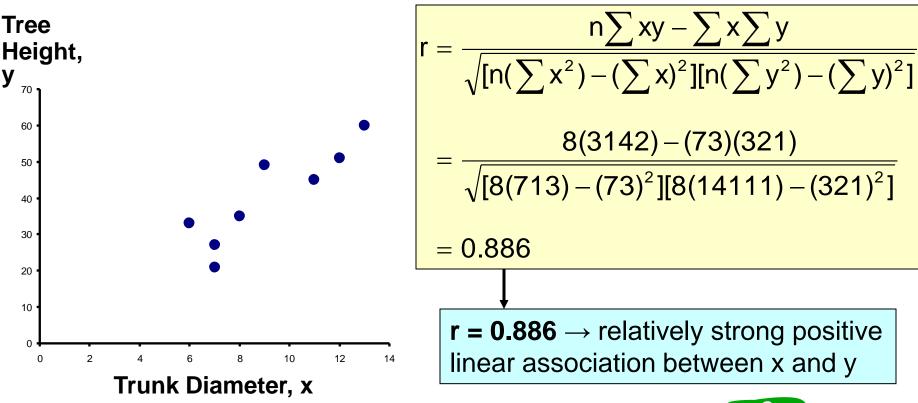
- r = Sample correlation coefficient
- n = Sample size
- x = Value of the independent variable
- y = Value of the dependent variable

Calculation Example

Tree Height	Trunk Diamete r			
У	X	ху	у ²	X ²
35	8	280	1225	64
49	9	441	2401	81
27	7	189	729	49
33	6	198	1089	36
60	13	780	3600	169
21	7	147	441	49
45	11	495	2025	121
51	12	612	2601	144
Σ=321	Σ=73	Σ=3142	Σ=14111	Σ=713

12

Calculation Example



Excel Output

Excel Correlation Output

Tools / data analysis / correlation...

		Tree Heig		eight	Trunk Diameter	r
Tree Height		1				
Trunk Diameter			0.886231		•	1
	Correlation between					
	Tree Height and Trunk Diameter					

Significance Test for Correlation

Hypotheses

 H_0 : ρ = 0 (no correlation) H_A : ρ ≠ 0 (correlation exists)

• Test statistic $t = \frac{r}{\sqrt{1-r^2}}$ $\sqrt{\frac{1-r^2}{n-2}}$

(with n - 2 degrees of freedom)

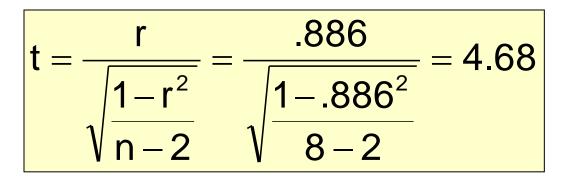
Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the .05 level of significance?

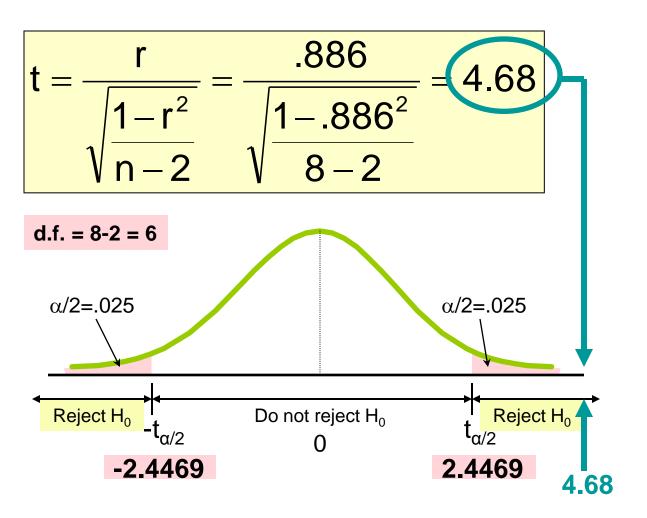
$$H_0: ρ = 0$$
 (No correlation)

$$H_1: ρ ≠ 0$$
 (correlation
exists)

$$\alpha = .05$$
, df = 8 - 2 = 6



Example: Test Solution



Decision: Reject H₀

Conclusion: There **is evidence** of a linear relationship at the 5% level of significance

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable
- Dependent variable: the variable we wish to explain

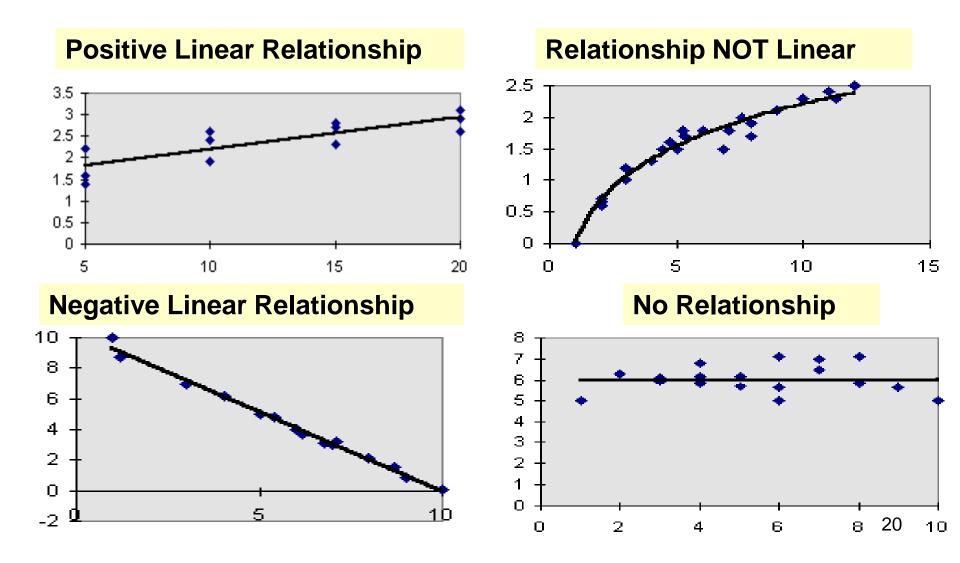
Independent variable: the variable used to explain the dependent variable

18

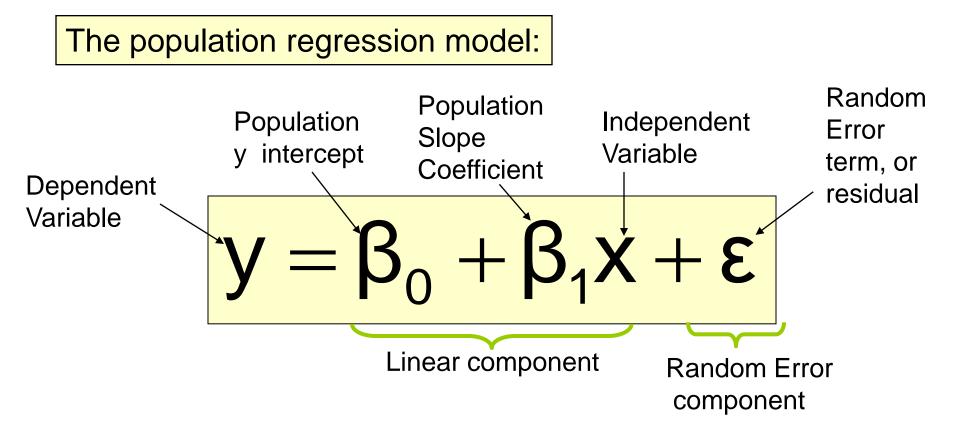
Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression Models

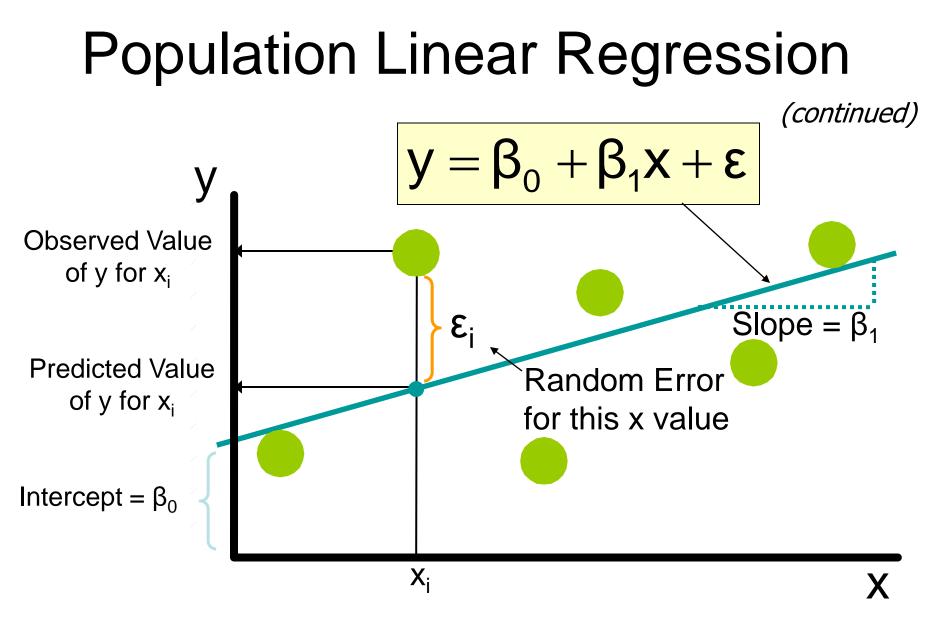


Population Linear Regression



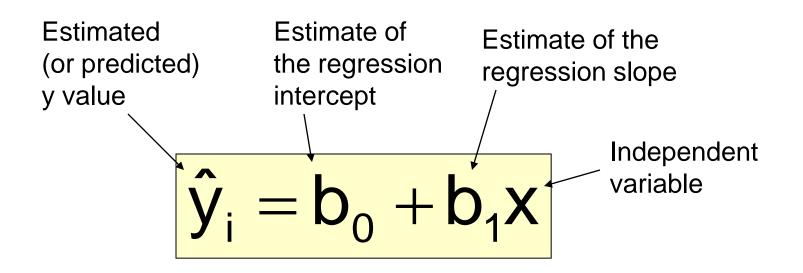
Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear 22



Estimated Regression Model

The sample regression line provides an estimate of the population regression line



The individual random error terms e_i have a mean of zero

Least Squares Criterion

b₀ and b₁ are obtained by finding the values of b₀ and b₁ that minimize the sum of the squared residuals

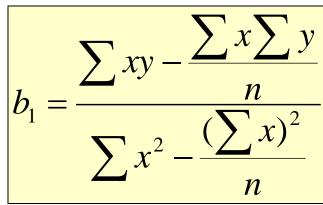
$$\sum e^{2} = \sum (y - \hat{y})^{2}$$
$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

The Least Squares Equation

• The formulas for b_1 and b_0

are
$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

algebraic equivalent:



and

$$b_0 = \overline{y} - b_1 \overline{x}$$

Interpretation of the Slope and the Intercept

b₀ is the estimated average value of y when the value of x is zero

 b₁ is the estimated change in the average value of y as a result of a one-unit change in x

Finding the Least Squares Equation

 The coefficients b₀ and b₁ will usually be found using computer software, such as Excel or Minitab

 Other regression measures will also be computed as part of computerbased regression analysis

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - –Dependent variable (y) = house price in \$1000s
 - –Independent variable (x) = square feet

Sample Data for House Price Model

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Regression Using Excel

Tools / Data Analysis /

M	1icrosoft Excel - 13da	ta.xls	
8	<u>File E</u> dit <u>V</u> iew Ir	nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> a	ata <u>W</u> indow <u>H</u> elp Acro <u>b</u> at
	📽 🖬 🚳 🖨 🖪	🖤 👗 🖻 🛍 - 🚿	🤹 Σ - ء Ω 急 Ζ↓ Δ↓ 🛍 🦑 100% - 📿 鍋 🖁 🦉 Ξ
		- B I U =	喜 喜 鹵 \$ %, ‰ ; ◎ 谭 谭 图 • 🕭 • ▲ • ④ ④ 役 役
	Chart 1 🗸	f _x	
	A	B	
1	House Price	Square Feet	Input OK OK
2	245	1400	Cancel
3	312	1600	Help
4	279	1700	I Constant is Zero
5	308	1875	Confidence Level: 95 %
6	199	1100	Output options
7	219	1550	O Qutput Range:
8	405	2350	New Worksheet Ply:
9	324	2450	O New Workbook
10	319	1425	Residuals
11	255	1700	Standardized Residuals 🔽 Line Fit Plots
12 13			Normal Probability
13			Normal Probability Plots
15			
1.40			

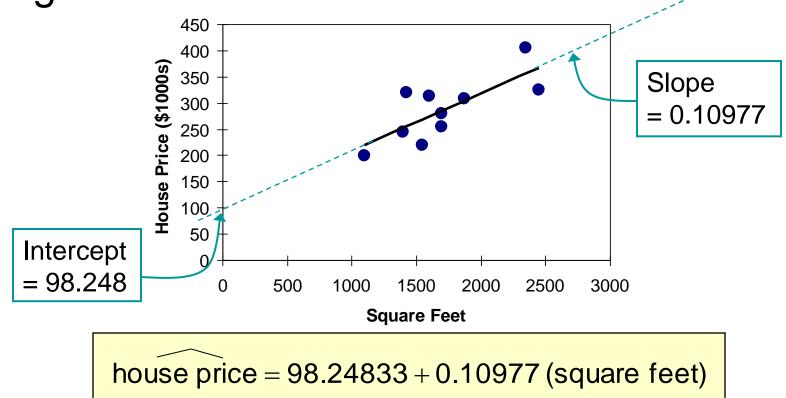
Excel Output

Regression Statistics

regi eeeren e						
Multiple R	0.76211					
R Square	0.58082					
Adjusted R Square	0.52842	The regres	ssion eq	uatior	n is:	
Standard Error	41.33032					
Observations	10	house price	e = 98.248	333 + 0	.10977 (sc	luare feet
		1				
ANOVA	df	SS	MS	F	Significance F	
Regression	1	18934.9348	18934.934 8	11.084 8	0.01039	
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				
	Coefficien			P-		Upper
	ts	Standard Error	t Stat	value	Lower 95%	95%
Intercept	98.24833	58.03348	1.69296	0.1289	-35.57720	232.0738 6
Square Feet	0.10977	0.03297	3.32938	0.0103 9	0.03374	0.18580

Graphical Presentation

House price model: scatter plot and regression line



Interpretation of the Intercept, b₀

house price = 98.24833 + 0.10977 (square feet)

- b₀ is the estimated average value of Y when the value of X is zero (if x = 0 is in the range of observed x values)
 - Here, no houses had 0 square feet, so $b_0 =$ 98.24833 just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b₁

house price = 98.24833 + 0.10977 (square feet)

 b₁ measures the estimated change in the average value of Y as a result of a one-unit change in X

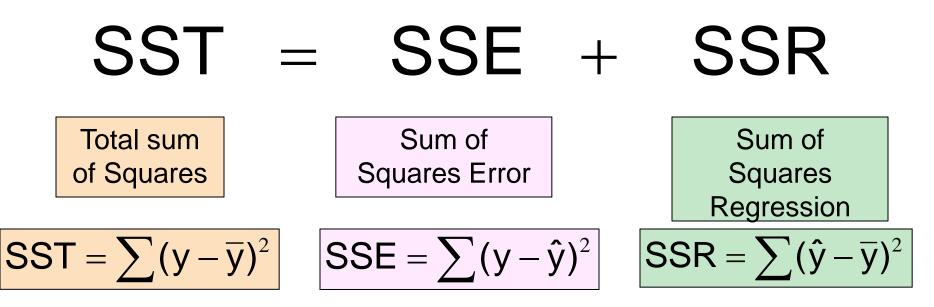
- Here, $b_1 = .10977$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size 35

Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is 0 ($\sum (y \hat{y}) = 0$)
- The sum of the squared residuals is a minimum (minimized $\sum (y-\hat{y})^2$)
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of β_0 and β_1

Explained and Unexplained Variation

• Total variation is made up of two parts:



where:

 \overline{y} = Average value of the dependent variable y = Observed values of the dependent variable \hat{y} = Estimated value of y for the given x value

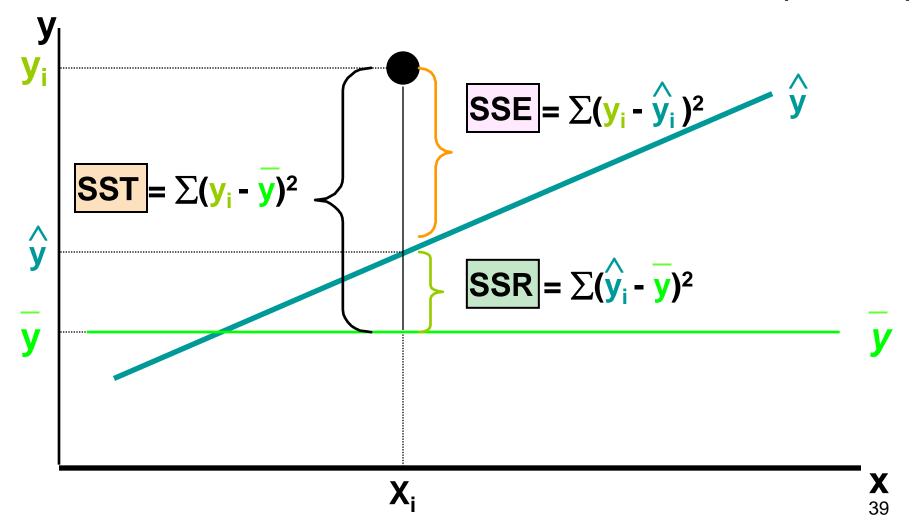
Explained and Unexplained Variation

(continued)

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean y
- SSE = error sum of squares
 - Variation attributable to factors other than the relationship between x and y
- SSR = regression sum of squares
 - Explained variation attributable to the relationship between x and y

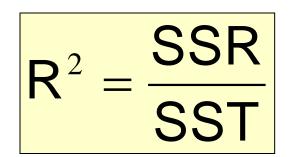
Explained and Unexplained Variation

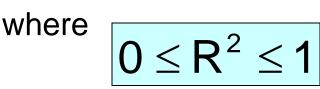
(continued)



Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²





Coefficient of Determination, R²

(continued)

Coefficient of determination

R^2 –	SSR	sum of squares explained by regression
	SST	total sum of squares

Note: In the single independent variable case, the coefficient of determination is

$$R^2 = r^2$$

where:

 R^2 = Coefficient of determination

r = Simple correlation coefficient

Examples of Approximate R² Values

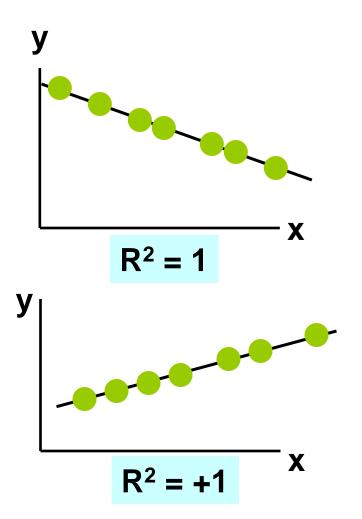
 $R^2 = 1$

Perfect linear relationship

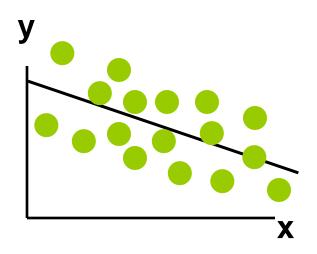
100% of the variation in y is

explained by variation in x

between x and y:

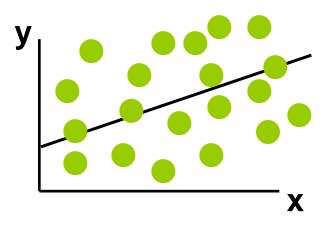


Examples of Approximate R² Values



$$0 < R^2 < 1$$

Weaker linear relationship between x and y:



Some but not all of the variation in y is explained by variation in x

Examples of Approximate R² Values

$$y$$

$$R^2 = 0$$

$$x$$

$$R^2 = 0$$

No linear relationship between x and y:

The value of Y does not depend on x. (None of the variation in y is explained by variation in x)

Excel Output

Regression Stat	istics	\mathbf{D}^2 SS	R 18934.9348
Multiple R	0.76211	$K^- =$	$\frac{1}{T} = \frac{100010010}{32600.5000} = 0.58082$
R Square	0.58082		
Adjusted R Square	0.52842		58.08% of the variation in
Standard Error	41.33032		house prices is explained by
Observations	10		variation in square feet

ANOVA					Significance
	df	SS	MS	F	F
			18934.934	11.084	
Regression	1	189 34.9348	8	8	0.01039
Residual	8	13665.565 2	1708.1957		
Total	9	32600.500 0			

	Coefficie			P-		Upper
	nts	Standard Error	t Stat	value	Lower 95%	95%
				0.1289		232.0738
Intercept	98.24833	58.03348	1.69296	2	-35.57720	6
				0.0103	D	45
Square Feet	0.10977	0.03297	3.32938	9	0.03374	0.45580

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

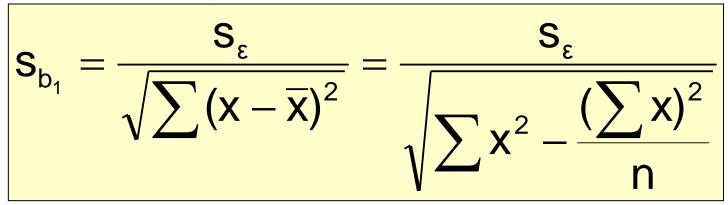
$$s_{\epsilon} = \sqrt{\frac{SSE}{n-k-1}}$$

Where

- SSE = Sum of squares error
 - n = Sample size
 - k = number of independent variables in the model

The Standard Deviation of the Regression Slope

 The standard error of the regression slope coefficient (b₁) is estimated by



where:

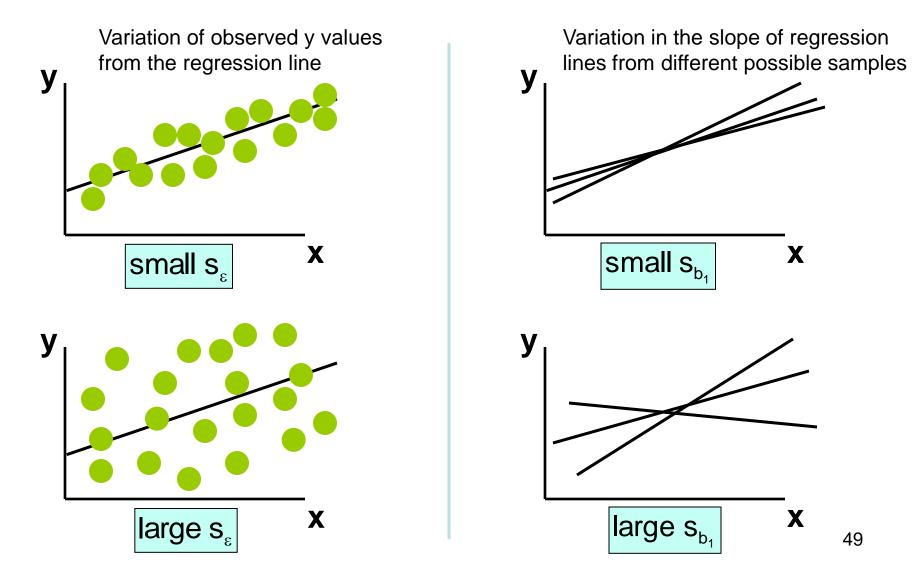
 S_{b_1} = Estimate of the standard error of the least squares slope

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}}$$
 = Sample standard error of the estimate

Excel Output

Regression	Statistics					
Multiple R	0.76211		11 220	22		
R Square	0.58082	$S_{\epsilon} = $	41.330	32		
Adjusted R Square	0.52842					
Standard Error Observations	41.330 32 10	S _b	_ = 0.03	3297		
ANOVA					Significance	
	df	SS	MS	F	F	
Regression	1	18934.9348	18934.9348	11.0848	0.01039	
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386 48
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors



Inference about the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between x and **y**?
- Null and alternative hypotheses
 - $-H_0$: $\beta_1 = 0$ (no linear relationship)

 $-H_1$: $\beta_1 \neq 0$ (linear relationship does exist)

Test statistic

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

where:

- b_1 = Sample regression slope coefficient
- β_1 = Hypothesized slope
- s_{b1} = Estimator of the standard error of the slope

Inference about the Slope: t Test

(continued)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

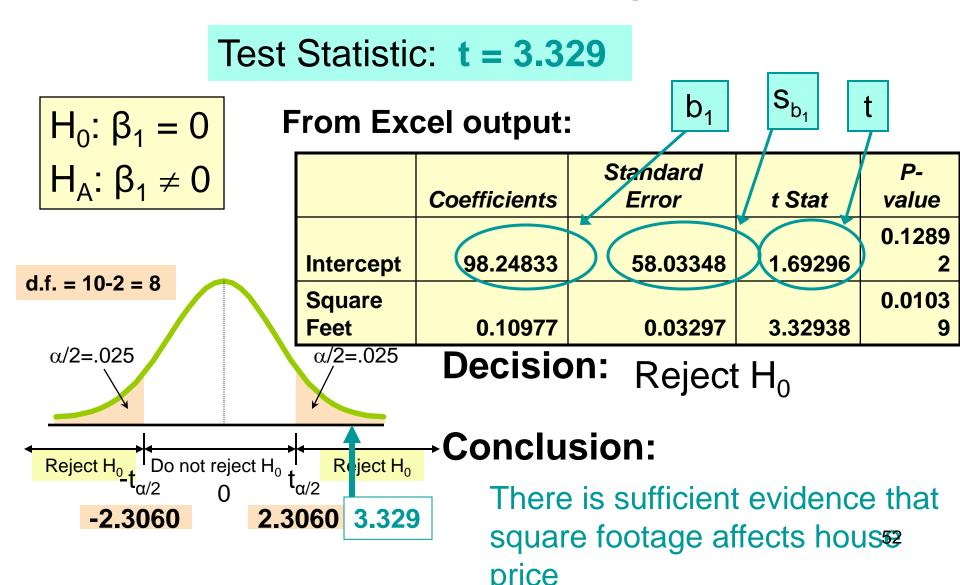
Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Does square footage of the house affect its sales price?

Inferences about the Slope: t Test Example



Regression Analysis for Description

Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{\alpha/2} S_{b_1}$$

d.f. = n - 2

Excel Printout for House Prices:

	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Regression Analysis for Description

	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Confidence Interval for the Average y, Given x

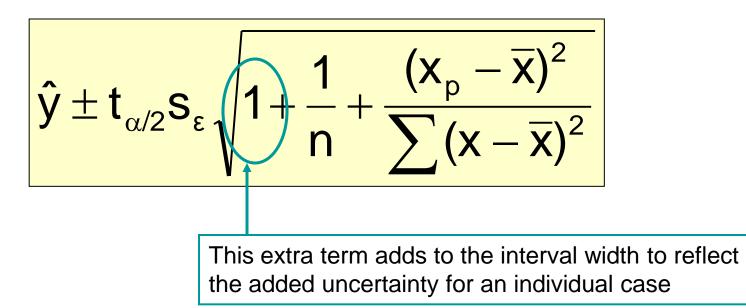
Confidence interval estimate for the mean of y given a particular x_p

Size of interval varies according to distance away from mean, \overline{x}

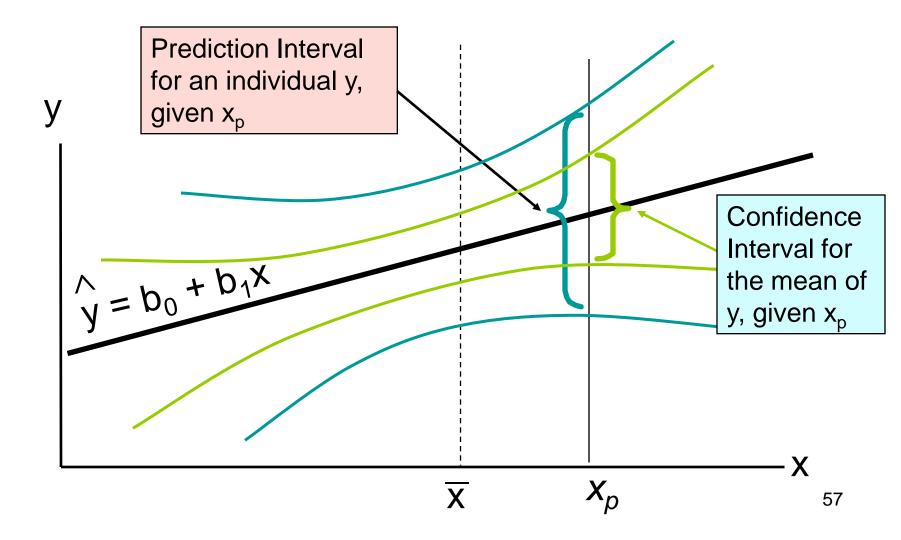
$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}}$$

Confidence Interval for an Individual y, Given x

Confidence interval estimate for an Individual value of y given a particular x_p



Interval Estimates for Different Values of x



Example: House Prices

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

Predict the price for a house with 2000 square feet

Example: House Prices

(continued)

Predict the price for a house with 2000 square feet:

house price = 98.25 + 0.1098 (sq.ft.)

= 98.25 + 0.1098(2000)

= 317.85

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Estimation of Mean Values: Example

Confidence Interval Estimate for E(y)|x_p

Find the 95% confidence interval for the average price of 2,000 square-foot houses

Predicted Price $\hat{Y}_{i} = 317.85 \ (\$1,000s)$

$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints are 280.66 -- 354.90, or from \$280,660 -- \$354,900

Estimation of Individual Values: Example

Prediction Interval Estimate for $y|x_p$

Find the 95% confidence interval for an individual house with 2,000 square feet

Predicted Price $\hat{Y}_{i} = 317.85 \ (\$1,000s)$

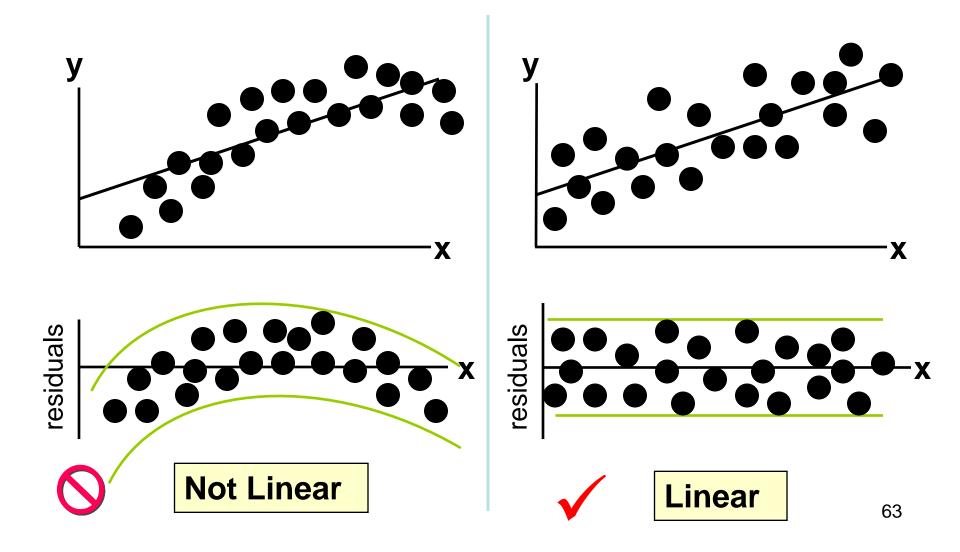
$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints are 215.50 -- 420.07, or from \$215,500 -- \$420,070

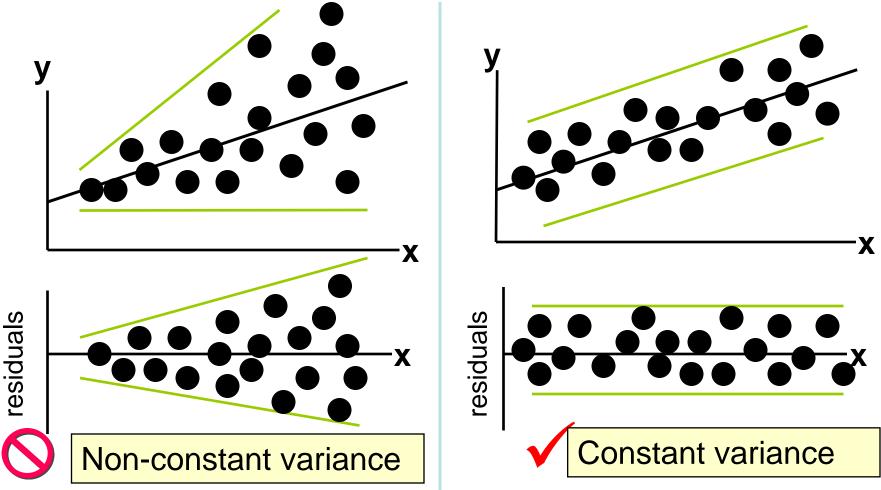
Residual Analysis

- Purposes
 - -Examine for linearity assumption
 - Examine for constant variance for all levels of x
 - -Evaluate normal distribution assumption
- Graphical Analysis of Residuals
 - -Can plot residuals vs. x
 - -Can create histogram of residuals to check for normality 62

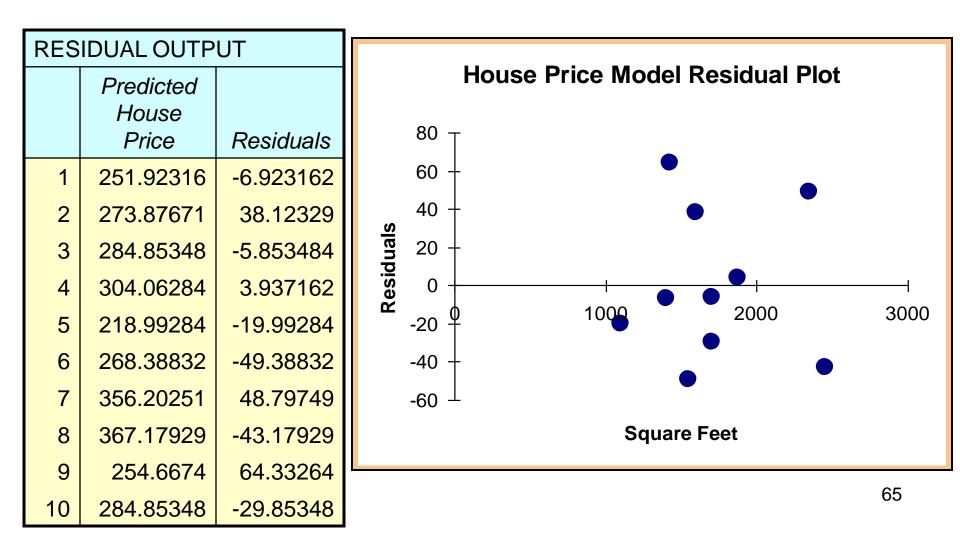
Residual Analysis for Linearity



Residual Analysis for Constant Variance



Excel Output



• Thank you.