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The Multiple Linear Regression Model 

 
Multiple linear regression model  

 

• employs at least two regressor variables 

 

 Yi  = 0  + 1X1i  + 2X2i + 3X3i  + . . . + kXki + i , 

   i  =  1, 2, . . . , n 
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where: 
 
Yi   :value of the response variable in the ith trial ; 
0,1,2,…,k :the parameters of the model ; 
X1i    :value of the 1st regressor variable in the ith trial ; 
X2i   :value of the 2nd regressor variable in the ith trial ; 
     . 
     . 
     . 
Xki   :value of the kth regressor variable in the ith trial ; 
i   :random error term in the ith trial. 
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Example:  
 

 Consider the dependent variable selling price 
of house (PRICE) as a function of the 
independent variable floor space (FLR) and 
another independent variable, say garage size 
(GAR), which can also be used to predict 
PRICE. 

 

  PRICE  =  0 + 1 FLR + 2 GAR  +  . 
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Assumptions of the multiple linear regression model: 
 
1. For the ith trial, the error component i has a Normal 

distribution with mean 0 and variance 2. 
 

2. The error components in any pair of trials, say the ith and the 
jth, are independent. 
 

3. The terms 0, 1, 2, …,  and k  in the model are parameters 
whose values are typically unknown and must therefore be 
estimated from the sample data.  
 

4. The k regressor variables X1, X2, …, Xk are considered to be 
known constants that are fixed or pre-chosen. 
 

Remark:   As much as possible, values of the regressor  
      variables  should not be highly correlated to avoid 

       model-fitting   problems. 
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The consequences of these assumptions are: 
 
1. The regression function corresponding to the 

multiple linear regression model is  
 

 E(Yi)  = 0 + 1X1i + 2X2i + 3X3i + . . . + kXki . 
 
2. The variance of the probability distribution of Y for 

a given value of X is 2. 
3. The observed value of Y in the ith trial is larger or 

smaller than its mean by the amount i, the value of 
the error component in the ith trial. 

4. The outcome in any trial is neither affected by nor 
affects the error term in any other trial. 
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The Regression Coefficients 
 

Consider the estimated model given by 
 

PRICE   =   33.705   +   0.01694 FLR   +   4.5048 GAR . 
 
• the value 33.705 represents the estimated mean selling price of the 

house when both floor space and garage size are set to 0 ; 
 

• 0.01694 represents the estimated increase in the mean selling price 
when FLR is increased by 1 square foot while holding the value of 
GAR fixed ; 
 

• 4.5048 represents the estimated increase in the mean selling price 
when GAR is increased by 1 unit while holding the value of FLR 
fixed. 
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Note: The value 33.705 is meaningless because the 
regression model is relevant only for the range of 
values of both FLR and GAR.  The values of FLR range 
from 596 to 2261 and the values of GAR from 0 to 2; 
therefore, we do not interpret the value 33.705. 

 

 In general, for the estimated multiple linear 
regression model of the form  

   

       Yi  =  b0  +  b1X1i  +  b2X2i  + … +  bkXki , 
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• b0 is the estimated mean of Y when the values of all regressor 
variables X1, X2, X3, …, Xk are set to 0 ; 
 

• b1 is the estimated increase or decrease in the mean of Y for 
every unit increase in the value of X1 holding the values of X2, X3, 
… and Xk fixed ; 

 
• b2 is the estimated increase or decrease in the mean of Y for 

every unit increase in the value of X2 holding the values of X1, X3, 
… and Xk fixed ; 

 . 
 . 
 . 
• bk is the estimated increase or decrease in the mean of Y for 

every unit increase in the value of Xk holding the values of X1, X2, 
… and Xk-1 fixed . 

 
Note:  The value of b0 is relevant only if zero is within the range of 

values of all regressor variables. 
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The Analysis of Variance (ANOVA) 

Analysis of Variance method  
 
• decomposes the variation in the response 
 variable Y into explained and  unexplained variation 
 
Explained variability = amount of variability in the 

response variable that can be attributed to the set of 
k regressor variables 

 
Unexplained variability = variability in the response 

variable attributed to error 
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For the selling price data,  

Table 2.1. Analysis of variance corresponding to the Selling Price data 

Effect Sum of 
Squares 

  df Mean 
Squares 

F-value p-level 

 
Regression 
 

 
2429.729 

 
2 

 
1214.864 

 
18.29069 

 
.000018 

Residual 1527.656 23 66.420 

Total 3957.385 
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 The value 2429.729 represents the amount of 
variation inselling price (PRICE) explained by the 
variables FLR and GAR. The value 1527.656 
represents the unexplained variation in PRICE.  
And the value  3957.385 represents the total 
variation in PRICE, which is simply the sum of the 
explained and unexplained parts. 

 

 In general, the ANOVA table is given by 
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Effect Sum of 
Squares 

df Mean  

Squares 
F-value 

Regression SSR k MSR  =  SSR/ k F = MSR/MSE 

Error SSE n-(k+1) MSE  =  SSE/(n-k-1) 

Total TSS n-1 
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where: 

        k=number of regressor variables ; 

     MSR=mean squares due to regression ; 

    MSE=mean squares due to error ; 

n=number of observations/trials . 

SSR   = sum of squares due to regression; represents the amount of 
variability in the response variable that can be explained by 
the set of k regressor variables in the model ; 

SSE = sum of squares due to error; represents the amount of 
variability in the response variable that can no longer be 
explained by the linear relationship of Y with the set of k 
regressor variables ; 

TSS = total sum of squares; measures the total variability in the 
response variable ; 
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The Coefficient of Multiple Determination (R2) 

• a general measure of the goodness-of-fit of the 
model to the sample data 

• denoted by R2 

• computed as: 

 SSR 

R2  =    . 

  TSS 
 

 is normally expressed as a percentage 

 is interpreted as the amount of variability in the 
response variable that can be explained by the set 
of k regressor variables 
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In the selling price example, R2 is given by 

 2429.729 

R2  =    =  .6140  . 

 3957.385 

  Thus, we say that 61.40% of the variability 
in selling price of house can be explained 
by the variability in both floor space and 
garage size. 
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The Adjusted R2 

• has the same interpretation as the R2 but is used for 
comparing the goodness-of-fit of different regression 
models with varying numbers of regressor variables 

                                    SSE/(n-k-1) 

adjusted R2  = 1 -    . 

                TSS/(n-1) 

  In the selling price example, the 
adjusted R2 is given by 
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   An estimated regression model with a higher 
adjusted R2 is said to have better fit than 
models having lower adjusted R2 values. 

       1527.656 / 23 

adjusted R2  = 1 -    =  .5804 

              3957.385 / 25 
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The F – Test 

The F-test tests whether:  
 
  Ho:   all parameters (except 0 ) are equal to zero  
    vs. 
  Ha:  there is at least one parameter which is not  
   equal to zero . 
 
  Referring   to   the  ANOVA  table  in  page 37, the    
    F-statistic tests whether: 
 
  Ho:  1 = 2 = 0  
     vs. 
  
  Ha:  at least one  differs from zero . 
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  The F-statistic of 18.291, with a corresponding p-value 
of 0.000018, leads us to reject the null hypothesis at 
a level of significance  = .05. Thus, we can say that 
either FLR or GAR or both have a significant linear 
relationship with PRICE. 

 

  In general, the F-test tests the hypothesis 

 

  Ho:  1 = 2 = 3 = … = k = 0    

     vs. 

  Ha:  at least one  differs from zero . 
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If the null hypothesis is not rejected,  
 
• conclude that no regressor variable has a significant linear 

relationship with the response variable 
 
If the null hypothesis is rejected,  
 
• conclude that there is at least one regressor variable that 

has a significant linear relationship with the response 
variable 
 

• proceed to the individual t-tests to identify which among 
the regressor variables can explain a significant amount of 
variability in the response variable 
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The t – Tests 

BETA St. Err. 

Of BETA 
B St. Err. 

Of B 
t(23) p-

lev
el 

 Interce
pt 

33.7050
3 

4.2296 7.9689 .00000 

 FLR .61678 .141685 .01694 .0039 4.3532 .00023 

 GAR .29425 .141685 4.50481 2.1691 2.0768 .04917 

Table 2.2.  Results of the t-Tests Performed for the Regression Model 

PRICE  =  0 + 1FLR + 2GAR +  
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The t-tests above test three different hypotheses: 

 

  Ho:  0  =  0  vs.  Ha: 0    0 

  Ho:  1  =  0  vs.  Ha: 1    0 

  Ho:  2  =  0  vs.  Ha: 2    0 . 

 

 For each of the tests above, using a level of significance 
of .05, the corresponding p-value tells us to  

 

  Reject  Ho:  0  =  0 

  Reject  Ho:  1  =  0 

  Reject Ho:   2  =  0 . 
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• Tests  and  above imply that the variables FLR 
and GAR have a significant contribution in 
predicting the mean selling price of houses. 

 

• Test  implies that the Y-intercept is significantly 
different from zero. 

 

Thus, the estimated regression model can be written as 

 
PRICEi  =  33.70503  +  0.01694 FLRi  + 4.50481 GARi . 
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  In general, the individual t-tests test the 
hypotheses 

 
  Ho: 0  =  0 vs. Ha: 0    0 
  Ho: 1  =  0 vs. Ha: 1    0 
  Ho: 2  =  0 vs. Ha: 2    0 
        . 
        . 
        . 
  Ho: k  =  0 vs. Ha: k    0  . 
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• If any of these tests leads to the acceptance of the 
null hypothesis, then we say that the 
corresponding regressor variable does not have a 
significant contribution in predicting the mean of 
the response variable  

 

• If any of the tests above leads to the rejection of 
the null hypothesis, then we say that the 
corresponding regressor variable has a significant 
contribution in predicting the mean of the 
dependent variable. 
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Regression Diagnostics and Residual Analysis 

  The regression diagnostics applied in the simple linear 
regression model is the same as that for the multiple linear 
regression model. In addition, we test for the linear 
dependencies among the regressor variables. 

   
  In summary, we check for: 

 
• linearity of each regressor variable with the response variable 
• constancy of error variance 
• outlying observations 
• Normality of the error terms 
• multicollinearity  
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Linearity  

  Scatterplots can be made for the response 
against each of the regressor variables.   
 

  Figure 2.1 shows that there exists a positive 
relationship between FLR and PRICE; that the points 
can be summarized by a straight line. 

   
  Figure 2.2 suggests that there is a slight positive 

relationship between GAR and PRICE. Likewise, the 
points can be summarized by a straight line. 
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Figure 2.1. PRICE vs FLR  Figure 2.2. PRICE vs GAR  
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Note: 

 

  Because we are looking only at the relationship 
of one of the regressor variables with the response 
variable, any departure from a straight line does not 
imply that the multiple linear regression model is not 
appropriate for the data. 

 

  If any of the regressor variables do not seem to 
be linearly related with the response variable, 
transform either the response variable or the 
regressor variable  
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Possible transformations 

log Y   and/or   log X 

    

Y    and/or    X

3 Y    and/or    3 X

    Y
1

   and/or    X
1
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Constancy of Error Variance  

  For the multiple linear regression model, the plot 
of the residuals versus the predicted values should 
form a horizontal band around zero which should 
show neither an increasing nor a decreasing trend.  

 

  The figure below gives the residual plot for the 
selling price data. This plot shows that the residuals 
are randomly scattered around the mean value of 
zero. 
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Figure 2.3. Scatterplot of the residuals vs. the predicted values  
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Normality of the Error Terms 

  A frequency histogram can be constructed to 
assess the Normality of the residuals. The shape of 
the histogram should approximate that of a Normal 
distribution.  
 

  The figure below gives the frequency histogram 
of the residuals for the selling price data. 
Superimposed on this histogram is a plot of a Normal 
distribution with a mean of zero and a variance equal 
to 66.420, the mean square error. The plot suggests 
that the distribution of the residuals tends to follow 
the Normal curve. 
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Figure 2.4. Frequency histogram of the residuals 
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  Another graph that can be used to detect 
non-normality of the residuals is the Normal 
probability plot. The interpretation of the 
Normal probability plot is the same as in the 
simple linear regression case.  

 

  Below is the Normal probability plot of the 
residuals for the selling price data. The plot 
shows that the residuals follow the expected 
percentiles of the Normal distribution. Thus, 
we say that the residuals follow a Normal 
distribution.  
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Figure 2.5. Normal probability plot of the residuals 
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Outlying Observations 

 Outlying observations can be identified using either 
the residual plot or the standardized residual plot. 
The interpretation of these plots is the same as in 
the simple linear regression case.  Below is the 
standardized residual plot for the selling price data. 
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Figure 2.6. Standardized residual plot for the selling price data  

The distribution of the points in Figures 2.3 and 2.6 are the same. 

For both plots, the values are clustered together suggesting that 

there is no outlying observation in the data set. 
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Prototype Residual Plots: 

 

  The figures below are some examples of residual 
plots that might be encountered in practice.  

Figure 2.7 
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Figure 2.8a  Figure 2.8b  
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  Figure 2.7 shows a residual plot that follows no 
systematic pattern, suggesting no depatures from 
the assumptions of the model. 

 

  Figures 2.8a and 2.8b show residual plots that 
exhibit nonconstancy of variance. Figure 2.8a 
exhibits a funnel-shaped graph opening to the right. 
This suggests that the residual values increase as the 
predicted values increase. Likewise, Figure 2.8b 
exhibits a funnel-shaped graph opening to the left. 
This suggests that the residual values decrease as the 
predicted values increase. 
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Multicollinearity 

  Multicollinearity refers to the presence of linear 
dependencies among the regressor variables. This occurs 
when one or more of the regressor variables can be expressed 
as a linear combination of the other regressor variables. 

 

  One measure that is used to detect the presence of 
multicollinearity is the tolerance value. One regressor variable 
is regressed on the remaining regressor variables and the 
coefficient of multiple determination (R2) is computed. The 
tolerance value is obtained by subtracting the R2 from 1. 
Below are the tolerance values computed for the selling price 
data. 
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Table 2.3. Tolerance values computed for the selling price data 

Tolerance R–square Partial 

Correlation 

Semipartial 

Correlation 

FLR .836065 .163935 .672111 .563967 

GAR .836065 .163935 .397382 .269053 

A tolerance value smaller than 0.1 indicates the 

presence of multicollinearity. The tolerance values 

given in the table above are all greater than 0.1, 

indicating that serious multicollinearity is not present. 
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Some remedial measures that can be used to 
treat the problem of multicollinearity 
include: 

 

1. deletion of one or more regressor variables 
in the model 

2. the use of ridge regression 

3. the use of principal components regression 
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Variable Selection 

• Not all variables hypothesized to affect the response 
variable may have a significant contribution in predicting 
the mean value of the response variable.  Thus model 
selection procedures are needed to choose the “best” 
set of regressor variables. 

 

Some Common Variable Selection Procedures 

 

• Backward Selection Procedure 

 

• Forward Selection Procedure 
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Variable Selection 

Backward Selection 

 

• starts with all predictor variables in the model 

 

• removes the regresssors sequentially, depending on 
whether or not the regression coefficient associated 
with the regressor variable is significantly different 
from zero 
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  Table 2.4 gives the ANOVA for fitting a regression model 
containing the regressor variables FLR, GAR and BDR, number 
of bedrooms. 

Table 2.4. Analysis of variance table for the regression 

model containing the regressor variables FLR, GAR and BDR 

Effect Sum of 
Squares 

df Mean 
Squares 

F-value p-level 

Regression 2476.559 3 825.5197 12.26440 .000063 

Residual 1480.826 22 67.3103 

Total 3957.385 
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  The table below gives the summary of the backward 
selection procedure for fitting a regression model with FLR, 
GAR and BDR as regressors. 

Table 2.5.  Summary output of the backward selection 

     procedure for the regression model containing the 

     regressor variables FLR, GAR and BDR 

BETA St. Err. 

of BETA 
B St. Err. 

of B 
t p-level 

Intercept 35.29369 4.66440 7.56661 .00000 

BDR 

FLR 

-.14768 

.71894 

.177053 

.188001 

-1.42314 

.01975 

1.70617 

.005164 

-.83411 

3.82415 

.00023 

.00092 

GAR .28825 .142813 4.41294 2.18639 2.01837 .05591 
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BETA St. Err. 

of BETA 
B St. Err. 

of B 
t p-level 

Intercept 35.69431 4.96181 7.19380 .00000 

BDR 

FLR 

-.16568 

.84781 

.188273 

.188273 

-1.59662 

.02329 

1.81430 

.005171 

-.88002 

4.5031 

.38795 

.00016 

BETA St. Err. 

of BETA 
B St. Err. 

of B 
t p-level 

Intercept 33.91683 4.51075 7.51912 .00000 

FLR .73592 .138205 .02021 .003796 5.32486 .00002 
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Forward Selection 

 

• starts with one regressor variable entered into 
the equation  

 

• adds variables sequentially depending on an 
entry criterion (F-to-enter). 
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  The table below gives the summary of the forward 
selection procedure for fitting a regression model with 
FLR, GAR and BDR as regressors. 

Table 2.6.  Summary output of the forward selection procedure for the 

regression model with FLR, GAR and BDR 

 
Step 

+in / -
out 

Multiple 

R-
square 

R-square 

change 

F – to 

enter/re
m 

p-level Variables 
included 

FLR 1 .541584 .541584 28.35417 .000021 1 

GAR 2 .613973 .072390 4.31307 .049177 2 
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• Thank you. 
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