STAT 115:Experimental Designs

Multisample inference: Analysis of Variance

Josefina V. Almeda 2013

Learning Objectives

- 1. Describe Analysis of Variance (ANOVA)
- 2. Explain the Rationale of ANOVA
- 3. Compare Experimental Designs
- 4. Test the Equality of 2 or More Means
 - Completely Randomized Design
 - Randomized Block Design

Analysis of Variance

An *analysis of variance* is a technique that partitions the total sum of squares of deviations of the observations about their mean into portions associated with independent variables in the <u>experiment</u> and a portion associated with error

Analysis of Variance

A *factor* refers to a categorical quantity under examination in an experiment as a possible cause of variation in the response variable.

Analysis of Variance

Levels refer to the categories, measurements, or strata of a factor of interest in the experiment.

Types of Experimental Designs

Completely Randomized Design

Completely Randomized Design

1. Experimental Units (Subjects) Are Assigned Randomly to Treatments

Subjects are Assumed Homogeneous

2. One Factor or Independent Variable
– 2 or More Treatment Levels or groups

3. Analyzed by One-Way ANOVA

One-Way ANOVA F-Test

 Tests the Equality of 2 or More (*p*) Population Means

- 2. Variables
 - One Nominal Independent Variable
 - One Continuous Dependent Variable

One-Way ANOVA F-Test Assumptions

- 1. Randomness & Independence of Errors
- 2. Normality
 - Populations (for each condition) are Normally Distributed
- 3. Homogeneity of Variance
 - Populations (for each condition) have Equal Variances

One-Way ANOVA F-Test Hypotheses

- $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_p$
 - All Population Means are Equal
 - No Treatment Effect
- H_a: At Least 1 Pop. Mean is Different
 - Treatment Effect
 - $\text{ NOT } \mu_1 \neq \mu_2 \neq ... \neq \mu_p$

One-Way ANOVA F-Test Hypotheses

- $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_p$
 - All Population Means are Equal
 - No Treatment Effect
- H_a: At Least 1 Pop. Mean is Different
 - Treatment Effect

One-Way ANOVA Basic Idea

- 1. Compares 2 Types of Variation to Test Equality of Means
- 2. If Treatment Variation Is Significantly Greater Than Random Variation then Means Are Not Equal
- 3.Variation Measures Are Obtained by 'Partitioning' Total Variation

Sum of Squares Among Sum of Squares Between Sum of Squares Treatment Among Groups Variation

Sum of Squares Among Sum of Squares Between Sum of Squares Treatment (SST) Among Groups Variation Sum of Squares Within Sum of Squares Error (SSE) Within Groups Variation

Total Variation

$$SS(Total) = (Y_{11} - \overline{Y})^2 + (Y_{21} - \overline{Y})^2 + \dots + (Y_{ij} - \overline{Y})^2$$

Treatment Variation

$$SST = n_1 \left(\overline{Y}_1 - \overline{Y}\right)^2 + n_2 \left(\overline{Y}_2 - \overline{Y}\right)^2 + \ldots + n_p \left(\overline{Y}_p - \overline{Y}\right)^2$$

Random (Error) Variation

$$SSE = (Y_{11} - \overline{Y}_1)^2 + (Y_{21} - \overline{Y}_1)^2 + \dots + (Y_{pj} - \overline{Y}_p)^2$$

One-Way ANOVA F-Test Test Statistic

- 1. Test Statistic $-F = MST / MSE = \frac{STT / (p-1)}{SSE / (n-p)}$
 - MST Is Mean Square for Treatment
 - MSE Is Mean Square for Error
- 2. Degrees of Freedom
 - $-v_1 = p 1$
 - $-v_2 = n p$
 - *p* = # Populations, Groups, or Levels
 - *n* = Total Sample Size

One-Way ANOVA Summary Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square (Variance)	F
Treatment	p - 1	SST	MST = SST/(p - 1)	MST MSE
Error	n - p	SSE	MSE = SSE/(n - p)	
Total	n - 1	SS(Total) = SST+SSE		

One-Way ANOVA F-Test Critical Value

One-Way ANOVA F-Test Example

As a vet epidemiologist you want to see if 3 food supplements have different mean milk yields. You assign 15 cows, 5 per food supplement. Question: At the .05 level, is there a difference in mean yields?

Food1	Food2	Food3
25.40	23.40	20.00
26.31	21.80	22.20
24.10	23.50	19.75
23.74	22.75	20.60
25.10	21.60	20.40

One-Way ANOVA F-Test Solution

- Ho: $\mu_1 = \mu_2 = \mu_3$
- Ha: Not All Equal
- **α** = .05
- $v_1 = 2 v_2 = 12$
- Critical Value(s):

Test Statistic: $= \frac{MST}{MSE} = \frac{23.5820}{.9211}$ = 25.6 **Decision:** Reject at $\alpha = .05$ **Conclusion:** There Is Evidence Pop. **Means Are Different**

Summary Table Solution

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square (Variance)	F
Food	3 - 1 = 2	47.1640	23.5820	25.60
Error	15 - 3 = 12	11.0532	.9211	
Total	15 - 1 = 14	58.2172		

SAS CODES FOR ANOVA

- Data Anova;
- input group\$ milk @@;
- cards;

•	food1 25.40	food2 23.40	food3 20.00
•	food1 26.31	food2 21.80	food3 22.20
•	food1 24.10	food2 23.50	food3 19.75
•	food1 23.74	food2 22.75	food3 20.60
•	food1 25.10	food2 21.60	food3 20.40

- ;
- run;
- proc anova; /* or PROC GLM */
- class group;
- model milk=group;
- run;

SAS OUTPUT - ANOVA

Source	DF	Sum of	Mean Square	F Value	Pr > F
		equales			
Model	2	47.16400000	23.5820000	0 25.60) <.0001
Error	12	11.05320000	0.92110000		
Corrected Total	14	58.21720000			

Pair-wise comparisons

- Needed when the overall F test is rejected
- Can be done without adjustment of type I error if other comparisons were planned in advance (least significant difference LSD method)
- Type I error needs to be adjusted if other comparisons were not planned in advance (Bonferroni's and scheffe's methods)

Fisher's Least Significant Difference (LSD) Test

To compare level 1 and level 2

$$t = \left(\overline{y}_1 - \overline{y}_2\right) / \sqrt{MSE\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Compare this to $t_{\alpha/2}$ = Upper-tailed value or $-t_{\alpha/2}$ lower-tailed from Student's t-distribution for $\alpha/2$ and (n - p) degrees of freedom

MSE = Mean square within from ANOVA table *n* = Number of subjects p = Number of levels

Bonferroni's method

To compare level 1 and level 2 $t = \left(\overline{y}_1 - \overline{y}_2\right) / \sqrt{MSE\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

Adjust the significance level α by taking the new significance level α^*

$$\alpha^* = \alpha / \binom{p}{2}$$

run;

proc anova; class group; model milk=group; means group/ lsd bon;

SAS CODES FOR multiple comparisons

SAS OUTPUT - LSD

t Tests (LSD) for milk

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	0.9211
Critical Value of t	$2.17881 = t_{.975,12}$
Least Significant Difference	e 1.3225

Means with the same letter are not significantly different.

t Grouping	Mean	Ν	group
А	24.9300	5	food1
В	22.6100	5	food2
С	20.5900	5	food3

SAS OUTPUT - Bonferroni

Bonferroni (Dunn) t Tests for milk

NOTE: This test controls the Type I experimentwise error rate

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	0.9211
Critical Value of t	2.77947=t _{1-0.05/3/2,12}
Minimum Significant Differe	nce 1.6871

Means with the same letter are not significantly different.

Bon Grouping	Mean	Ν	l group
А	24.9300	5	food1
В	22.6100	5	food2
С	20.5900	5	food3

Randomized Block Design

Randomized Block Design

- 1. Experimental Units (Subjects) Are Assigned Randomly within Blocks
 - Blocks are Assumed Homogeneous
- 2. One Factor or Independent Variable of Interest
 - 2 or More Treatment Levels or Classifications
- 3. One Blocking Factor

Randomized Block Design

Factor Levels:				
(Treatments)	, A, B, C	C, D		
	Treat	tments	are rand	domly
Experimental Units	ass	igned w	ithin blo	ocks
Block 1	A	С	D	В
Block 2	С	D	В	A
Block 3	В	A	D	С
• •	-	-	-	-
Block b	D	С	A	В

Randomized Block F-Test

1. Tests the Equality of 2 or More (*p*) Population Means

2. Variables

- One Nominal Independent Variable
- One Nominal Blocking Variable
- One Continuous Dependent Variable

Randomized Block F-Test Assumptions

- 1. Normality
 - Probability Distribution of each Block-Treatment combination is Normal
- 2. Homogeneity of Variance
 - Probability Distributions of all Block-Treatment combinations have Equal Variances

Randomized Block F-Test Hypotheses

- $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_p$
 - All Population Means are Equal
 - No Treatment Effect
- H_a: At Least 1 Pop. Mean is Different
 - Treatment Effect
 - $\mu_1 \neq \mu_2 \neq ... \neq \mu_p$ is wrong

Randomized Block F-Test Hypotheses

- $H_0: \mu_1 = \mu_2 = \dots = \mu_p$
 - All Population Means are Equal
 - No Treatment Effect
- H_a: At Least 1 Pop. Mean is Different
 - Treatment Effect
 - $\mu_1 \neq \mu_2 \neq \dots \neq \mu_p \text{ Is}$ wrong

The F Ratio for Randomized Block Designs

• SS=SSE+SSB+SST

$$F = \frac{\text{MST}}{\text{MSE}} = \frac{SST / (p-1)}{SSE / (n-1-p+1-b+1)}$$
$$= \frac{SST / (p-1)}{SSE / (n-p-b+1)}$$

Randomized Block F-Test Test Statistic

- 1. Test Statistic
 - -F = MST / MSE
 - MST Is Mean Square for Treatment
 - MSE Is Mean Square for Error
- 2. Degrees of Freedom

$$-v_1 = p - 1$$

$$-v_2 = n - b - p + 1$$

• *p* = # Treatments, *b* = # Blocks, *n* = Total Sample Size

Randomized Block F-Test Critical Value

Randomized Block F-Test Example

 You wish to determine which of four brands of tires has the longest tread life. You randomly assign one of each brand (A, B, C, and D) to a tire location on each of 5 cars. At the .05 level, is there a difference in mean tread life?

	Tire Location			
Block	Left Front	Right Front	Left Rear	Right Rear
Car 1	A: 42,000	C: 58,000	B: 38,000	D: 44,000
Car 2	B: 40,000	D: 48,000	A: 39,000	C: 50,000
Car 3	C: 48,000	D: 39,000	B: 36,000	A: 39,000
Car 4	A: 41,000	B: 38,000	D: 42,000	C: 43,000
Car 5	D: 51,000	A: 44,000	C: 52,000	B: 35,000

Randomized Block F-Test Solution

- Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$
- Ha: Not All Equal
- **α** = .05
- $v_1 = 3 v_2 = 12$
- Critical Value(s):

- **Test Statistic:**
 - F = 11.9933

Decision: Reject at α = .05

Conclusion:

There Is Evidence Pop. Means Are Different

SAS CODES FOR ANOVA

data block;

input Block\$ trt\$ resp @@;

cards;

Car1	A: 42000 Car1 C: 58000 Car1 B: 38000 Car1 D: 44000
Car2	B: 40000 Car2 D: 48000 Car2 A: 39000 Car2 C: 50000
Car3	C: 48000 Car3 D: 39000 Car3 B: 36000 Car3 A: 39000
Car4	A: 41000 Car4 B: 38000 Car4 D: 42000 Car4 C: 43000
Car5	D: 51000 Car5 A: 44000 Car5 C: 52000 Car5 B: 35000

;

run;

proc anova;

class trt block; model resp=trt block; Means trt /lsd bon; **run**;

SAS OUTPUT - ANOVA

Dependent Variable: resp

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	7	544550000.0	0 77792857.3	1 6.22	0.0030
Error	12	150000000.0) 12500000.0	C	
Corrected Total	19	694550000.	0		

R-Square	Coeff Var	Root MSE	resp Mea	in	
0.784033	8.155788	3535.534	43350.0	0	
DF	Anova SS	Mean Squ	are FVal	ue	Pr > F
3	449750000.	0 1499166	666.7 1	1.99	<u>0.0006</u>
4	94800000.0	2370000	0.0 1	.90	0.1759
	R-Square 0.784033 DF 3 4	R-Square Coeff Var 0.784033 8.155788 DF Anova SS 3 449750000. 4 94800000.0	R-Square Coeff Var Root MSE 0.784033 8.155788 3535.534 DF Anova SS Mean Squ 3 449750000.0 1499166 4 94800000.0 2370000	R-Square Coeff Var Root MSE resp Mea 0.784033 8.155788 3535.534 43350.0 DF Anova SS Mean Square F Val 3 449750000.0 149916666.7 1 4 94800000.0 23700000.0 1	R-Square Coeff Var Root MSE resp Mean 0.784033 8.155788 3535.534 43350.00 DF Anova SS Mean Square F Value 3 449750000.0 149916666.7 11.99 4 9480000.0 2370000.0 1.90

SAS OUTPUT - LSD

Means with the same letter are not significantly different.

Grouping	Mean	Ν	l trt
A	50200	5	C:
B B	44800	5	D:
C B	41000	5	A:
C	37400	5	B:

t

SAS OUTPUT - Bonferroni

Means with the same letter are not significantly different.

Bon Grou	ping	Mean	Ν	l trt
	A ^	50200	5	C:
В	A	44800	5	D:
B	C	41000	5	A:
	C	37400	5	B: