Directions: Show your complete solutions.

1. Given $f(x, y, z)=x^{2} y^{3} z^{4}$.
a. Find the rate of change at the point $(1,-1,1)$ in the direction given by the vector $\vec{V}=\langle-2,1,2\rangle$.
b. What is the unit vector of the direction in which the rate of change of f at $(1,-1,1)$ is maximum?
2. Using Lagrange multipliers, find the maximum value of $f(x, y, z)=2 x+6 y+10 z$ satisfying $x^{2}+y^{2}+z^{2}=35$.
3. What is the equation of the tangent plane to the surface given by the vector equation $\overleftarrow{R}(s, t)=\left\langle s^{2}, s-t^{2}, t^{3}\right\rangle$ at the point $(1,0,1)$ on the surface?
4. Setup the iterated integral for the volume of the solid under the paraboloid $z=3 x^{2}+y^{2}$ over the region bounded by $y=-x$ and $y=x^{2}-6$.
5. Setup the iterated integral for the area of the surface given by $z=x+y^{2}$ over the triangular region with vertices at $(0,0),(1,1)$ and $(0,1)$.
6. Evaluate the following iterated integrals.
a. $\int_{0}^{1} \int_{2 y}^{2} \cos x^{2} d x d y$
b. $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y$
