Directions: Show your complete solutions.

1. Using spherical coordinates, evaluate
$$\int_0^2 \int_0^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2+y^2}} \frac{1}{x^2+y^2+z^2} dz dx dy$$

2. Setup an iterated integral in cylindrical coordinates that gives the volume of the solid in the first octant bounded by the cylinder $x^2 + y^2 = 1$ and the plane z = x.

3. Given the vector field
$$\vec{F}(x,y,z) = \langle z - x, 2y, 2xz \rangle$$

- a. Determine $div\ \vec{F}$ and $curl\ \vec{F}$.
- b. Find the work done by \vec{F} in moving an object along the curve C defined by $\vec{R}(x,y,z) = \langle t^2, e^t, t-1 \rangle, \ t \in [0,1].$
- 4. Given the vector field $\vec{F}(x,y) = \left\langle \frac{y}{x} + \sin y, \ln x + x \cos y 4y \right\rangle$
 - a. Show that \vec{F} is conservative.
 - b. Find all potential functions of \vec{F} .
 - c. Evaluate $\int_C \vec{F} \cdot d\vec{R}$, where C is any path from the point $(1,\pi)$ to (e,0).
- 5. Use Green's Theorem to evaluate the line integral $\oint_C (x^2 + y^2) dx + (x^2 y) dy$, where C is the closed curve determined by $x = y^2$ and y = -x.
- 6. Evaluate the surface integral $\iint_{S} (2x 3y + z) dS$, where S is the surface given by the vector equation $\vec{R}(s,t) = \langle 2t, t s, s \rangle$, where $0 \le s \le 1$ and $0 \le t \le 1 s$.
- 7. Find the flux of $\vec{F}(x, y, z) = \langle -1, 0, 1 \rangle$ across the portion of the cone $z = \sqrt{x^2 + y^2}$ which is inside the cylinder $x^2 + y^2 = 1$ with upward orientation.