Directions: Show your complete solutions.

1. (a) Show that the sequence $\left\{\frac{2 n^{3}-3}{5 n^{3}-2 n}\right\}_{n=1}^{\infty}$ is convergent.
(b) Explain why the series $\sum_{n=1}^{\infty} \frac{2 n^{3}-3}{5 n^{3}-2 n}$ is divergent.
2. Find the sum of the series $\sum_{n=2}^{\infty}\left[\frac{2 n-2}{n+1}-\frac{2 n}{n+2}\right]$.
3. Determine whether the given series is convergent of divergent.
(a) $\sum_{n=1}^{\infty} \frac{\cos ^{4} n}{n^{3}+5 n+2}$
(c) $\sum_{n=1}^{\infty} \frac{n!}{3^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1+3 n^{3}}{1+2 n^{4}}$
(d) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
4. Determine the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{3^{n} \sqrt{n+1}}$
5. (a) Find a power series representation for $\frac{1}{2-x}$
(b) Find a power series representation for $\frac{1}{(2-x)^{2}}$. (Hint: $\frac{1}{(2-x)^{2}}=D_{x}\left[\frac{1}{2-x}\right]$).
(c) Use (b) to find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n-1} n}{2^{n+1}}$.
6. Let $f(x)=\sqrt{x}$.
(a) Find the third degree Taylor polynomial of $f(x)$ about $x=1$,
(b) Using (a), estimate the numerical value of $\sqrt{1.01}$.
