Directions: Show your complete solutions.

1. (a) Show that the sequence $\left\{\frac{2n^3-3}{5n^3-2n}\right\}_{n=1}^{\infty}$ is convergent. (b) Explain why the series $\sum_{n=1}^{\infty} \frac{2n^3-3}{5n^3-2n}$ is divergent.

2. Find the sum of the series
$$\sum_{n=2}^{\infty} \left[\frac{2n-2}{n+1} - \frac{2n}{n+2} \right].$$

3. Determine whether the given series is convergent of divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos^4 n}{n^3 + 5n + 2}$$
 (c) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$
(b) $\sum_{n=1}^{\infty} \frac{1 + 3n^3}{1 + 2n^4}$ (d) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

4. Determine the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{3^n \sqrt{n+1}}$

- 5. (a) Find a power series representation for $\frac{1}{2-x}$ (b) Find a power series representation for $\frac{1}{(2-x)^2}$. (Hint: $\frac{1}{(2-x)^2} = D_x \left[\frac{1}{2-x}\right]$). (c) Use (b) to find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}n}{2^{n+1}}$.
- 6. Let $f(x) = \sqrt{x}$.
 - (a) Find the third degree Taylor polynomial of f(x) about x = 1,
 - (b) Using (a), estimate the numerical value of $\sqrt{1.01}$.

—End of Exam—