
MATH55  3rd Long Exam 

   

Directions: Show your complete solutions. 

 

1. (a) Show that the sequence 
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 (b) Explain why the series 
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2. Find the sum of the series 
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3. Determine whether the given series is convergent of divergent. 
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4. Determine the radius and interval of convergence of the power series 
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5. (a) Find a power series representation for 
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 (b) Find a power series representation for 
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 (c) Use (b) to find the sum of the series  
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6. Let ( )f x x= . 

 (a) Find the third degree Taylor polynomial of ( )f x  about 1x = , 

 (b) Using (a), estimate the numerical value of 1.01 . 

 

 

 

 

 

—End of Exam— 


