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FORECASTING 
Forecasting is an activity that 

calculates/predicts some future events or 

conditions, usually as a result of rational 

study or analysis of pertinent data. 

Qualitative and Quantitative Forecasting 

 Qualitative is an intuitive and educated 

guess. 

 Quantitative is based on some 

mathematical (deterministic) or statistical 

model. 
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Statistical Forecasting Techniques 

A Statistical Forecasting Technique 

is one that generates forecasts by 

extrapolating patterns in historical 

data. 
 

Forecasting is linked to the building of 

statistical models in the sense that 

before one can forecast a variable of 

interest, one must build a model for it 

and estimate the model’s parameter(s) 

using historical data. 
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The estimated model summarizes the 

dynamic patterns in the data. It provides a 

statistical characterization of the links 

between the past and  future values. 

Statistical Forecasting Techniques 
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Forecasting is an interplay of the data, 

statistical techniques and the software 

FORECASTING SYSTEM 

DATA    

QUANTITATIVE  

 METHODS 
 
 

SOFTWARE 
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Types of Data 

•   Cross Section 

•   Time Series 
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Cross-section data refers to data taken 

at one point in time across a group. 

Per Capita GRDP, 2001 
In Current Prices, Pesos 
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A time series refers to data gathered 

sequentially in time. 
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Actual Value = Pattern + Error 

When the pattern is clear, this behavior may be used to 

explain the behavior of the series & predict future values. 

A fundamental assumption of most econometric methods 

is that actual value consists of a pattern and an error. 

Anatomy of a Model 

The pattern and error correspond to a model.  A model is 

a set of assumptions that summarizes the system 

governing a time series. 

9 



Note: 

• Elements entering the model should be assessed 
using summary statistics. 

 

• Aside from the usual measures of averages, 
standard deviations, and autocorrelations are 
important to justify their “predictive” ability in 
the model. 
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The Time Plot 

A pattern in a series may be visually assessed through a 

time plot.  A  time plot is a line chart of a data series 

against time.   
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Time Plot of Consumer Price Index (1994=100)
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A time series is usually defined by a model. 

Value = function of (Trend, Cycle, Season,  

                                              Random Shock) 

For example, the gross domestic product in the first 

quarter of 2003 is expressed as 

GDP 2003.Q1 = f (Trend Component 2003.Q1 , 

Cyclical Component 2003.Q1 , 

First Quarter Seasonal Index, 

Random disturbance) 
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Components of a Series 

The trend is the general long-run movement of 

the series. 
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The seasonality is the regular rise and fall 

pattern in the series that occurs within a year 

and then repeated on a yearly basis. 
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Figure 2. Real Gross Domestic Product (RGDP)

from 1st Quarter 1998 to 2nd Quarter 2002
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The cycle is the upward and downward change in 

the data pattern that occurs over a longer 

duration. 
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Figure 8. Annual GDP Growth Rate from 1970 to 2000
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The random disturbance is the collection of all 

other factors (shocks) affecting the series not 

due to trend, cycle or season. 

Examples of random 

disturbances are day-to-day 

natural variation in the 

demand that is the result of 

a consumer’s specific day-

to-day consumption “mood”. 
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Measuring Forecast Accuracy 
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  An implicit assumption of time series analysis is  

    that data are collected, observed or recorded at 

    regular intervals of time. 
. 

  Forecasting methods lose some degree of efficiency 

    when there are gaps in the time series. Thus, there  

    is a need to estimate missing data. 

  Estimation of data gaps are usually based on some 

    trend patterns evident in the series. Most common 

    trend patterns are linear, exponential and 

    quadratic. 

Addressing Data Gaps 
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A linear trend is exhibited by a line with 

minimal variation. 
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graph curving upwards. 
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A quadratic trend is somewhat U-shaped, 

concave or convex. 
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Simple Moving Averages 
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Simple Moving Averages 
 

The Simple Moving Average (SMA) is useful in 

modeling a series without trend nor seasonality 

but only a fluctuation about a common long-term 

level.  

 

The method of simple moving averages 

assumes that a future value will equal an 

average of past values. 
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In general, an N-period moving average denotes 

that a new forecast moves one period by adding 

the newest actual and dropping the oldest 

actual.  

 

For example, a 4-period SMA for May is  

SMA4(May) = (Jan+Feb+Mar+Apr)/4.  

 
If the value of the series from Jan to Apr are: 

       SMA4(May) = (120+124+122+123)/4 = 122.25 
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If the value of the series from Feb to May 

are: 

 

 

 

 

 
 

 

Now, a 4-period SMA for June is  

 

SMA4(Jun) = (Feb+Mar+Apr+May)/4.  

 

 

SMA4(Jun) = (124+122+123+125)/4 = 123.5 
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“H the optimal number of periods in a moving average?” 

                Here are some considerations    
  
The optimal number of period is one that gives minimal 
forecast error. 
 
A long-period SMA yields low forecast error when the 
series is very random and erratic, i.e., it is not possessing 
high levels of autocorrelation. 
 
A short-period SMA yields low forecast error when the 
series random yet moves smoothly up and down, i.e., it is 
highly autocorrelated. 
 
The number of period serves as the “length of memory” of 
the SMA. A four-period SMA “remembers” the past four 
actuals while an eight-period SMA “recalls” the eight most 
recent realizations. 
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Disadvantages of the SMA 

• SMA’s do not model trend or seasonality. 

 

• All data needed to calculate the average must be 

stored and processed. 

 

• It is difficult to determine the optimal number of 

periods without the judgment of the researcher 

who knows or has institutional memory of the 

series.  
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Exponential Smoothing 
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Single Exponential Smoothing 
 

Single exponential smoothing (SES) is 

another forecasting tool for data with no trend 

or seasonality. SES can be used for short 

series. 

Why “exponential”?  
  

SES uses forecasting equations based on 

past observations that are given 

exponentially decaying weights. 
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Why is smoothing important?  
 

Smoothing procedures allow 

estimation of future values by 

“learning” the historical behavior of 

a series. When a forecast is 

needed as input in some prediction 

equation (like regression models), 

smoothing methods “supply” such 

forecasts. 
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To forecast using SES, we model 

 

Forecast now = Constant x Past Actual +  

(1-constant) x Past Forecast 

 

The forecast equation for a series  Yt  is  

                        Ft = aY t-1 + (1-a)F t-1  

 

 
 a is called the smoothing constant. It is between 

0 and 1. 
 
 When a great amount of smoothing is desired, a 

“small” a must be used. 
 
 a is chosen such that a chosen measure of 

forecast performance (e.g., MAD) is minimized 
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Example: Suppose a company desires to forecast 

(monthly) demand of a product using SES with a=0.3. 

Last month’s demand was 1,000 and the forecast was 

900. Thus, the forecast for this month is 

 

Ft = 0.3(1,000) + (1-0.3)(900) = 930 units 

 

 
Further, if the actual demand next month is 950 units, 

then the forecast two months hence is 

 

Ft+2 = 0.3(950) + (1-0.3)(945) = 946.5 units 

 

 
Now suppose the actual demand for this month is 980 

units, the forecast for next month is 

 

Ft+1 = 0.3(980) + (1-0.3)(930) = 945 units 
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Double Exponential Smoothing 

(Brown’s One-Parameter Method) 

This is applicable to data with trend but no 
seasonality. 

The forecast equation for Yt+L is 
 

  Ft+L = MEANt + TRENDt x L 
 

 where MEAN and TREND are the “intercept” 
and “slope”, respectively, of the forecast 
equation. 
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Exponential Smoothing 

Holt-Winters Method 

Assumes that a reasonably consistent 

seasonal pattern exists, and establishes 

this 
 

Combines current level, trend, and 

seasonalities to forecast future values 
 

Uses exponential smoothing to estimate 

each of these parameters 
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Exponential Smoothing 

Holt-Winters Method 
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Exponential Smoothing 

Holt-Winters Method 
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Exponential Smoothing 

 

Holt-Winters Method 
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Exponential Smoothing 

Holt-Winters Method 
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Exponential Smoothing 

Holt-Winters Method 
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Double Exponential Smoothing 

(Holt’s Two-Parameter Method) 

This is applicable to data with trend but no 
seasonality. 

This procedure uses two smoothing 
constants, one each for the mean and the 
trend; thus allowing for greater flexibility in 
the values of MEAN and TREND. 
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Double Exponential Smoothing 

(Holt’s Two-Parameter Method) 

The forecast equation for Yt+L is 
 

  Ft+L = MEANt + TRENDt x L 
 

 where MEAN and TREND are the 
“intercept” and “slope”, respectively, of the 
forecast equation. 

L is the forecast horizon from time t. 

41 



Triple Exponential Smoothing 

(Additive Model) 

This method is applicable to data with trend 
and additive seasonality. 

 

The forecast equation for Yt+L is 

      Ft+L = MEANt + TRENDt x L + SEASONt-s+L 

 where SEASON is the seasonality part and s is 
the length of seasonality. 
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Triple Exponential Smoothing 

(Multiplicative Model) 

This is applicable to data with trend and 
multiplicative seasonality. 

The forecast equation for Yt+L is 

    Ft+L = (MEANt + TRENDt x L) x SEASONt-s+L 

 where SEASON is the seasonality index and s 
is the length of seasonality. 
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“I know of no way of judging the future 

but by the past.” 
Patrick Henry 
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