## Summation



## Expansion of the Summation Notation

## Examples:

- The terms of the sum are determined by successively replacing the index in the term of the summation by the elements in the index set.

$$
\begin{aligned}
& \sum_{i=1}^{3} X_{i}=X_{1}+X_{2}+X_{3} \\
& \sum_{i=2}^{3} X^{i}=X^{2}+X^{3} \\
& \sum_{j=2}^{3} X^{j}=X^{2}+X^{3}
\end{aligned}
$$

## Some Notes on Summation (page 187)

(1) The index may be any letter, but the letters $\mathrm{i}, \mathrm{j}$, and k are the most commonly used. Example:

$$
\sum_{i=1}^{n} X_{i}=\sum_{j=1}^{n} X_{j}
$$

(2) The lower limit of the summation may start with any integer smaller than the upper limit. Example:

$$
\sum_{k=3}^{6} X_{k}=X_{3}+X_{4}+X_{5}+X_{6}
$$

(3) The index will not necessarily appear as a subscript in the term of the summation. Example:

$$
\sum_{i=1}^{5} i=1+2+3+4+5
$$



Exercise \#1 (page 191)

| $i$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{i}$ | 2 | 3 | 4 | 5 | 6 |
| $Y_{i}$ | 1 | 4 | 2 | 3 | 5 |

Given the data above, find the following:
e) $\sum_{i=1}^{5} X_{i}^{2}$
f) $\left(\sum_{i=1}^{5} X_{i}\right)^{2}$
g) $\sum_{i=1}^{5}\left(X_{i}-Y_{i}\right)^{2}$
h) $\sum_{i=3}^{5}\left(X_{i}-1\right)$

## Exercise

Write the expansion of the following summation:
a) $\sum_{i=3}^{6} \frac{Z_{i}}{Y_{i}}$
b) $\frac{\sum_{i=3}^{6} Z_{i}}{\sum_{i=3}^{6} Y_{i}}$
c) $\sum_{k=0}^{3}\left(Y_{j}^{k}-Y_{k}\right)$
d) $\sum_{l=2}^{4} \sqrt{i}$
e) $\sum_{j=1}^{3} 3 X_{j}^{j}$

## Additional Notes on Summation

(1) $\sum_{i=1}^{n} X_{i}^{2} \neq\left(\sum_{i=1}^{n} X_{i}\right)^{2}$
(2) $\sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)^{2} \neq \sum_{i=1}^{n} X_{i}^{2}+\sum_{i=1}^{n} Y_{i}^{2}$
(3) $\sum_{i=1}^{n} X_{i} Y_{i} \neq\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)$
(4) $\sum_{i=1}^{n} \frac{X_{i}}{Y_{i}} \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} Y_{i}}$
(5) $\sum_{i=1}^{n} \sqrt{X_{i}} \neq \sqrt{\sum_{i=1}^{n} X_{i}}$

## Some Properties of Summation (pages 188-189)

(1) The summation of the sum (or difference) of two or more terms equals the sum (or difference) of the individual summations. For example,

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(X_{i}+Y_{i}+Z_{i}\right)=\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{n} Y_{i}+\sum_{i=1}^{n} Z_{i} \\
& \sum_{i=1}^{n}\left(X_{i}-Y_{i}-Z_{i}\right)=\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} Z_{i}
\end{aligned}
$$

(2) The summation of the product of a constant, c , with $X_{i}$, equals the product of the constant with the summation of $X_{i}$, i.e.,

$$
\sum_{i=1}^{n} c X_{i}=c \sum_{i=1}^{n} X_{i}
$$

(3) The summation of a constant, $c$, with index set $=\{1,2, \ldots, n\}$, equals the product of $n$ and $c$, i.e.

$$
\sum_{i=l}^{n} c=n c
$$

Section 6.1. Summation

## Example

$$
\begin{aligned}
\sum_{j=1}^{6}\left(X_{j}+2\right)^{2} & =\sum_{j=1}^{6}\left(X_{j}^{2}+4 X_{j}+4\right) \\
& =\sum_{j=1}^{6} X_{j}^{2}+\sum_{j=1}^{6} 4 X_{j}+\sum_{j=1}^{6} 4 \\
& =\sum_{j=1}^{6} X_{j}^{2}+4 \sum_{j=1}^{6} X_{j}+(6)(4) \\
& =\sum_{j=1}^{6} X_{j}^{2}+4 \sum_{j=1}^{6} X_{j}+24
\end{aligned}
$$

## Assignment: (page 192)

Exercise \#2 a-d.
Exercise \#3d. Define $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ and $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$. This is called the sample mean.

