Mathematics 53: Exercises on Derivatives, Tangent Lines, Normal Lines, Chain Rule, Implicit Differentiation and Differentiability

I. Use the definition to find the derivative of the following functions.

1. $f(x)=3 x^{2}-x-2$
2. $g(x)=\sqrt{2 x-2}$
3. $h(x)=\frac{1}{x+2}$
4. $m(x)=\tan x$
II. Find $\frac{d y}{d x}$. There is no need to simplify.
5. $y=\frac{x+2}{\sec x}$
6. $y=\frac{\frac{x^{2}}{4}+\sqrt[3]{x^{2}}}{x \cos 2 x}$
7. $y=\left[\frac{2 x^{3}+3 x^{2}-x}{\sqrt{x}+\sqrt[5]{x^{2}}} \cdot\left(x^{2}-\frac{2}{x}\right)\right]$
8. $y=\frac{\left(x^{2}-1\right)^{3}}{\left(4 x^{3}-5\right)^{2}}$
9. $y=\sqrt{\frac{x^{2}+4 x+2 \sqrt{x}}{3 x^{2}-7}}$
10. $y=\sqrt[3]{\frac{1+\cos x}{x \csc x^{2}}}$
11. $y=\sin \left[\left(4 x^{2}+3 x\right)^{4}\right]$
12. $y=x \tan \left(\frac{1}{x}\right)+\cot ^{2} 4 x$
13. $y=\frac{\cot \left(\cos ^{2} x\right)}{\sec ^{3} 4 x}$
14. $y=\frac{4 x^{2}\left(\tan x^{4}+3\right)}{\sqrt{\sin [\csc (2 x-3)]}}$
15. $y=\frac{\sqrt[3]{1-x}+\sec \left(x^{3}-2 x\right)}{\pi^{2}+2 x^{2} \cos 4 x}$
16. $x y^{3}=x+y^{2}+1$
17. $(x+y)^{3}+(x-y)^{3}=x^{4}+y^{4}$
18. $x \cos y=\left(x-y^{2}\right)^{2}$
19. $\sin (x y)+\cot \left(x^{2}+y\right)=\sqrt{1000}$
20. $\sec \left(3 x y^{2}\right)=y \csc x-\sqrt{x}+2 y$
21. $\frac{x^{3}}{4}-x \sqrt{y}=\sin \left[\tan \left(x^{2}+y^{4}\right)\right]$
22. $\cot \left(\frac{y}{x}\right)+\sin ^{2}\left(x^{3}+y\right)=3 x^{3}$
III. Find $\frac{d m}{d n}$ if $n m^{2}+2 m^{3}=n-2 m$.
IV. 1. If $f(2)=4, f^{\prime}(2)=-3, g(2)=2$ and $g^{\prime}(2)=6$, find $(f+g)^{\prime}(2),(f-g)^{\prime}(2)$, $(f \cdot g)^{\prime}(2)$ and $\left(\frac{g}{f}\right)^{\prime}(2)$.
23. If $h(3)=4$ and $h^{\prime}(3)=-3$, find $\left.\frac{d}{d x}\left[\frac{h(x)}{2 x}\right]\right|_{x=3}$
24. What is $(f \circ g)^{\prime}(3)$ if $g(3)=4, g^{\prime}(3)=2, f^{\prime}(3)=-3$ and $f^{\prime}(4)=-5$?
V. 1. Find the equation of the line normal to the graph of $y=x^{3}-3 x+1$ at the point where $x=2$.
25. Find all points on the graph of $f(x)=2 \sin x+\sin ^{2} x$ at which the tangent line is horizontal.
26. Determine the equation of the line tangent to the graph of $y=x^{2}-1$ and parallel to the line $4 x+y=1$.
27. Given $f^{\prime}(x)=\cot ^{2} x$ and $f\left(\frac{\pi}{3}\right)=\frac{\pi}{6}$.
a) Find the equation of the line normal to the graph of f at $x=\frac{\pi}{3}$.
b) Find $f^{\prime \prime \prime}(x)$.
28. Find the equation of the line tangent to the graph of $8\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.
29. At what point/s on the graph of $x y=(1-x-y)^{2}$ is the tangent line parallel to the y-axis?
30. Determine the equations of the two tangent lines to the graph of $y=4 x-x^{2}$ that passes through the point $(2,5)$.
VI. 1. Find all the derivatives of $f(x)=10 x^{6}-4 x^{5}+3 x^{3}+x^{2}-12 x+21$.
31. Determine $y^{(4)}$ if $y=\frac{7}{x^{4}}$.
32. Evaluate $D_{x}^{2}\left(x \sqrt{9-x^{2}}\right)$ and $\frac{d^{99}}{d x^{99}}[\sin (2 x)]$.
VII. 1. Find $y^{\prime \prime}$ at the point $(2,1)$ if $2 x^{2} y-4 y^{3}=4$.
33. Given $x^{2}+4 y^{2}=16$, show that $\frac{d^{2} y}{d x^{2}}=-\frac{1}{4 y^{3}}$.
VIII.
34. Determine if $f(x)=\left\{\begin{array}{cl}\sqrt{x^{2}+4} & \text { if } x<0 \\ \llbracket x \rrbracket+2 & \text { if } 0 \leq x \leq 2 \\ \frac{x^{2}+x-9}{x-3} & \text { if } x>2\end{array}\right.$ is differentiable at $x=0$ and $x=2$.
$\quad x=2$.
\quad 2.
$\quad x=4$.
IX. 1. Find real numbers a and b so that $g(x)=\left\{\begin{array}{cl}a x^{2}+3 b x & \text { if } x<6 \\ \sqrt{5 x-5} & \text { if } x \geq 6\end{array}\right.$ is differentiable at $x=6$.
35. Find real numbers a and b so that $g(x)=\left\{\begin{array}{cl}a x^{2}+\frac{b}{(x+1)^{2}}+a & \text { if } x \geq 1 \\ \sin (x-1) & \text { if } x<1\end{array}\right.$ is differentiable at $x=1$.
X. 1. If $f(t)=a t^{2}+b t+c, f(1)=5, f^{\prime}(1)=3$ and $f^{\prime \prime}(1)=-4$, what is $f(t)$?
36. If $f(x)+x \sin f(x)=x^{2}$, and $f(1)=0$, find $f^{\prime}(1)$.
37. Suppose f is a differentiable function such that $f(g(x))=x$ and $f^{\prime}(x)=1+$ $[f(x)]^{2}$. Show that $g^{\prime}(x)=\frac{1}{1+x^{2}}$.
