MATHEMATICS 17

EXERCISES

I. TRUE or FALSE. Write **TRUE** if the statement is correct, and write **FALSE** otherwise. **Explain** briefly.

1. All sets are disjoint with the empty set.

$$2. \quad \frac{x+y}{x+z} = \frac{y}{z}.$$

- 3. Given three non-empty sets A, B, and C, if $A \neq B$ and $B \neq C$ then $A \neq C$.
- 4. The additive inverse of the multiplicative inverse of $-\frac{2}{3}$ is $\frac{3}{2}$.
- 5. The number 3.1415926536 is a rational number.
- 6. $A \subseteq A, B$.
- 7. Division is an assiociative operation on the set of \mathbb{R} of real numbers.

8. For every $a \in \mathbb{R}$, there exists an inverse element for multiplication, $\frac{1}{a}$, such that $a \cdot \frac{1}{a} = 1$.

- 9. A nonnegative number is always positive.
- 10. Every integer is a factor of zero.
- 11. c (a b) = c a b
- 12. The set of even numbers is closed under addition.
- 13. The set of irrational numbers is closed under division.
- 14. The sum of two irrational numbers is always irrational.
- 15. 3(xy) = (3x)(3y) by distributive axiom.

II. Do as indicated.

- 1. List all the elements of the following:
 - (a) The set of even prime numbers.
 - (b) $\{b|b \text{ is a nonpositive integer greater than } 3\}.$
 - (c) $\{n|n \text{ is a positive divisor of }9\}.$

(d)
$$\left\{ \frac{1}{x} \middle| x \text{ is a positive integer less than } 10 \right\}$$

- 2. Use the rule method to describe the sets listed below.
 - (a) {Tuesday, Thursday}
 - (b) $\{+, \times, -, \div, \sqrt{n}, ()^n\}$
 - (c) $\{1, 11, 111, 1111, \ldots\}$
 - (d) $\{X, L, D, I, C, M, V\}$
- 3. Find the gcd and the lcm of a and b.
 - (a) a = 8, b = 28
 - (b) a = 27, b = 63
 - (c) $a = 2^2 \cdot 3^3 \cdot 5, b = 2^3 \cdot 3^3 \cdot 7$
 - (d) a = 1, b = p

- 4. The power set of a set A or the set of subsets of A is defined to be $\wp(A) = \{X | X \subseteq A\}$.
 - (a) Give the set of subsets (power set) of $X = \{1, \{2, 3\}\}$.
 - (b) If $\wp(A)$ has only one element, what can we say about A?
 - (c) What is the cardinality of $\wp(A)$ if n(A) = 1?, 2?, 3?, n?
 - (d) If $X = \{a, b\}$, then what is $\wp(\wp(X))$
- 5. A survey of the reading habits of 90 residents of a community showed 40 read newspaper X, 30 read newspaper Y, 20 read newspaper Z, 15 read newspapers X and Y, 10 read newspapers X and Z, 9 read newspapers Y and Z and 7 read all three. How many read
 - (a) At least one newspaper? at most one?
 - (b) Newspaper X but not Y?
 - (c) none of these newspapers?
- 6. Fill in the blanks using the following symbols: \mathbb{N} , W, \mathbb{Z} , \mathbb{Q} , \mathbb{Q}' , \mathbb{R} , \emptyset , \cup , \cap , \setminus .
 - (a) $\mathbb{Q}' \cap W = _$
 - (b) $\mathbb{R}_{\mathbb{Q}} = \mathbb{Q}$
 - (c) $(\mathbb{N} \cup W) \cap \mathbb{Z} =$
 - (d) $(\mathbb{R}\backslash\mathbb{Z})\backslash\mathbb{Q} =$
 - (e) $\mathbb{R} \setminus (\mathbb{N} \subseteq \mathbb{Q}) = \mathbb{Q}'$

III. Give the axiom that justifies each statement below.

- 1. $3 \cdot 1 = 1 \cdot 3$
- $2. \quad 7 \cdot 1 = 7 \cdot 1$
- 3. $\sqrt{3} \cdot \pi$ is a real number.
- 4. If a + b = c + d and c + d = 0, then a + b = 0.
- 5. If a is neither positive nor negative, then a = 0.
- 6. If x > 0 and y < 0, then x > y.

IV. Evaluate and simplify the following.

1.
$$(2^{-3})^{-1}$$

2. $(2^{-1} + 3^{-2})^{-1}$
3. $\frac{3^{0} + 3^{-1}}{3^{-3} + 3^{0}}$
4. $\frac{(20r^{2}s^{3}t^{4})(2r^{2}s^{2}t)}{(-4rst)(3rs^{4}t^{2})}$
5. $\left(\frac{7x^{5}}{8w^{3}y^{4}z^{6}}\right)^{5}$
6. $\left(\frac{5x^{2}y^{-4}}{4x^{-2}y^{-3}}\right)^{3}$
7. $\left(\frac{3x^{3}y}{3x^{2}z^{2}}\right)^{4} \left(\frac{3x^{-4}y^{2}}{4x^{-2}z^{2}}\right)^{-3}$

$$\left(\frac{1}{2x^{-2}y^3}\right) \left(\frac{1}{4xy^{-2}}\right)$$

Examples from CAT by Castillo, et. al, CAT by Leithold, MAT3rd by Vance Also, courtesy of manjologs