I. TRUE or FALSE. Write TRUE if the statement is correct, and write FALSE otherwise. Explain briefly.

1. All sets are disjoint with the empty set.
2. $\frac{x+y}{x+z}=\frac{y}{z}$.
3. Given three non-empty sets A, B, and C, if $A \neq B$ and $B \neq C$ then $A \neq C$.
4. The additive inverse of the multiplicative inverse of $-\frac{2}{3}$ is $\frac{3}{2}$.
5. The number 3.1415926536 is a rational number.
6. $A \subseteq A, B$.
7. Division is an assiociative operation on the set of \mathbb{R} of real numbers.
8. For every $a \in \mathbb{R}$, there exists an inverse element for multiplication, $\frac{1}{a}$, such that $a \cdot \frac{1}{a}=1$.
9. A nonnegative number is always positive.
10. Every integer is a factor of zero.
11. $c-(a-b)=c-a-b$
12. The set of even numbers is closed under addition.
13. The set of irrational numbers is closed under division.
14. The sum of two irrational numbers is always irrational.
15. $3(x y)=(3 x)(3 y)$ by distributive axiom.
II. Do as indicated.
16. List all the elements of the following:
(a) The set of even prime numbers.
(b) $\quad\{b \mid b$ is a nonpositive integer greater than 3$\}$.
(c) $\quad\{n \mid n$ is a positive divisor of 9$\}$.
(d) $\left\{\left.\frac{1}{x} \right\rvert\, x\right.$ is a positive integer less than 10$\}$
17. Use the rule method to describe the sets listed below.
(a) \{Tuesday, Thursday\}
(b) $\left\{+, \times,-, \div, \sqrt[n]{ },()^{n}\right\}$
(c) $\{1,11,111,1111, \ldots\}$
(d) $\{X, L, D, I, C, M, V\}$
18. Find the $g c d$ and the $l c m$ of a and b.
(a) $a=8, b=28$
(b) $a=27, b=63$
(c) $\quad a=2^{2} \cdot 3^{3} \cdot 5, b=2^{3} \cdot 3^{3} \cdot 7$
(d) $a=1, b=\mathrm{p}$
19. The power set of a set A or the set of subsets of A is defined to be $\wp(A)=\{X \mid X \subseteq A\}$.
(a) Give the set of subsets (power set) of $X=\{1,\{2,3\}\}$.
(b) If $\wp(A)$ has only one element, what can we say about A ?
(c) What is the cardinality of $\wp(A)$ if $n(A)=1$?, 2 ?, 3 ?, n ?
(d) If $X=\{a, b\}$, then what is $\wp(\wp(X))$
20. A survey of the reading habits of 90 residents of a community showed 40 read newspaper $\mathrm{X}, 30$ read newspaper Y, 20 read newspaper Z, 15 read newspapers X and $\mathrm{Y}, 10$ read newspapers X and $\mathrm{Z}, 9$ read newspapers Y and Z and 7 read all three. How many read
(a) At least one newspaper? at most one?
(b) Newspaper X but not Y?
(c) none of these newspapers?
21. Fill in the blanks using the following symbols: $\mathbb{N}, W, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^{\prime}, \mathbb{R}, \emptyset, \cup, \cap, \backslash$.
(a) $\mathbb{Q}^{\prime} \cap W=$ \qquad
(b) $\mathbb{R} _\mathbb{Q}=\mathbb{Q}$
(c) $(\mathbb{N} \cup W) \cap \mathbb{Z}=$ \qquad
(d) $\quad(\mathbb{R} \backslash \mathbb{Z}) \backslash \mathbb{Q}=$ \qquad
(e) $\quad \mathbb{R} \backslash\left(\mathbb{N} _\mathbb{Q}\right)=\mathbb{Q}^{\prime}$
III. Give the axiom that justifies each statement below.
22. $3 \cdot 1=1 \cdot 3$
23. $7 \cdot 1=7 \cdot 1$
24. $\sqrt{3} \cdot \pi$ is a real number.
25. If $a+b=c+d$ and $c+d=0$, then $a+b=0$.
26. If a is neither positive nor negative, then $a=0$.
27. If $x>0$ and $y<0$, then $x>y$.
IV. Evaluate and simplify the following.
28. $\left(2^{-3}\right)^{-1}$
29. $\left(2^{-1}+3^{-2}\right)^{-1}$
30. $\frac{3^{0}+3^{-1}}{3^{-3}+3^{0}}$
31. $\frac{\left(20 r^{2} s^{3} t^{4}\right)\left(2 r^{2} s^{2} t\right)}{(-4 r s t)\left(3 r s^{4} t^{2}\right)}$
32. $\left(\frac{7 x^{5}}{8 w^{3} y^{4} z^{6}}\right)^{5}$
33. $\left(\frac{5 x^{2} y^{-4}}{4 x^{-2} y^{-3}}\right)^{3}$
34. $\left(\frac{3 x^{3} y}{2 x^{-2} y^{3}}\right)^{4}\left(\frac{3 x^{-4} y^{2}}{4 x y^{-2}}\right)^{-3}$
