I. Do as indicated

1. Determine the quadrant containing $P(\theta)$ if,
(a) $\theta=\frac{19 \pi}{9}$
(e) $\cos \theta>0$ and $\tan \theta<0$
(b) $\theta=\frac{-17 \pi}{5}$
(f) $\sin \theta<0$ and $\cot \theta>0$
(c) $\theta=-10$
(g) $\cot \theta>0$ and $\sec \theta<0$
(d) $\theta=7$
(h) $\tan \theta>0$ and $\csc \theta<0$
2. Evaluate the following:
(a) $\sin \frac{2 \pi}{3}+\cos \frac{7 \pi}{6}+\tan \frac{5 \pi}{3}$
(f) $\csc \left(-\frac{11 \pi}{4}\right) \cot \left(-\frac{31 \pi}{6}\right)$
(b) $\tan \frac{5 \pi}{4}+\cot \frac{7 \pi}{4}-\sec \frac{5 \pi}{6}$
(g) $\tan \left(540^{\circ}\right) \cot \left(540^{\circ}\right)$
(c) $\cos \left(\frac{11 \pi}{6}\right) \tan \left(\frac{2 \pi}{3}\right) \csc \left(-\frac{7 \pi}{4}\right)$
(h) $\sin \left(-225^{\circ}\right) \cot \left(330^{\circ}\right)\left[\sec \left(-\frac{5 \pi}{4}\right)\right]^{-1}$
(d) $\sin \left(315^{\circ}\right) \tan \left(210^{\circ}\right) \sec \left(120^{\circ}\right)$
(i) $\frac{\sin \frac{5 \pi}{6}}{1+\cos \frac{5 \pi}{6}}$
3. Find the exact values of the other five trigonometric functions of θ.
(a) $\sin \theta=\frac{5}{13}$ and $\cos \theta>0$
(c) $\sec \theta=\sqrt{2}$ and $\cot \theta<0$
(b) $\tan \theta=\frac{15}{8}$ and $\sec \theta<0$
(d) $\csc \theta=-\frac{1}{2}$ and $\sec \theta>0$
4. If θ is an angle in standard position, and point P is n the terminal side of θ, find the six trigonometric functions of θ.
(a) $P(3,4)$
(d) $P(2 \sqrt{3},-2)$
(b) $P(-5,12)$
(e) $P(1,1)$
(c) $P(0,-4)$
(f) $P(-8,-15)$
II. Solve for the following.
5. Evaluate: $\sin \left(37.5^{\circ}\right) \cos \left(-37.5^{\circ}\right) \tan \left(-37.5^{\circ}\right) \sec \left(37.5^{\circ}\right) \csc \left(37.5^{\circ}\right) \cot \left(-37.5^{\circ}\right)$
6. If the minute hand of a clock has length 6 inches, how far does its tip travel in 1 hour and 20 minutes?
7. A pulley having diameter 20 cm is turned by a belt that moves at a rate of $3 \mathrm{~m} / \mathrm{s}$. How many revolutions does the pulley make per minute?
