I. Determine the amplitude, period, phase shift and vertical shift of the following then draw one cyle of the graph.

1. $f(x)=4 \sin (2 x-\pi)+1$
2. $g(x)=\frac{1}{2} \cos \left(\frac{x}{2}+\frac{\pi}{6}\right)-2$
3. $h(x)=-3+2 \sin \left(\frac{\pi}{2}-2 x\right)$
II. Evaluate the following.
4. $\cos ^{-1} 0-\csc ^{-1}\left(-\frac{2 \sqrt{3}}{2}\right)$
5. $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right) \cot ^{-1}(-\sqrt{3})$
6. $\cos \left[\operatorname{Arctan} \sqrt{3}+\operatorname{Arcsec}(-\sqrt{2})+\operatorname{Arcsin}\left(-\frac{\sqrt{3}}{2}\right)\right]$
7. $\cos ^{-1}\left(1-2 \sin ^{2} \frac{\pi}{14}\right)$
8. Arccot $\left[\cot \left(-\frac{\pi}{7}\right)\right]$
9. $\sin ^{-1}\left(\cos \frac{19 \pi}{9}\right)$
10. $\sec \left(\operatorname{Arccos} \frac{3}{5}+\operatorname{Arcsin} 1\right)$
11. $\sin \left(\sin ^{-1} \frac{2}{3}-\cos ^{-1} \frac{1}{3}\right)$
III. Find the solution set.
12. $\operatorname{Arccos}[\cos (-3)]-\operatorname{Arcsin} x=\frac{\pi}{2}+3$
13. $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)+4 \cot ^{-1} x=\sec ^{-1}(-2)$
14. $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$
15. $\operatorname{Arcsin} x+\operatorname{Arccos}(1-x)=0$
16. $\cos ^{-1} 1+2 \sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$
IV. Do as indicated.
17. Show that $\tan ^{-1} 2+\cot ^{-1}(-3)=\frac{5 \pi}{4}$
18. Show that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ where $x \in[-1,1]$
19. If $\theta=\tan ^{-1}\left(-\frac{3}{4}\right)$, find the exact value of $\sin 2 \theta$ and $\sin \frac{\theta}{2}$
V. Solve the following
20. Faye is bored during her Mathematics 17 class. She looked out the window and saw Jet at an angle of depression of 45°. After ten minutes, faye looked out again the window and saw Jet, this time at angle of depression of 30°. If the window is 7 meters from the ground, what is the distance travelled by Jet?
21. A telephone pole on the slope of a hill casts a shadow of 20 feet down the hill. If the angle of elevation of the sun is 75° and the hill is inclined 45°, find the height of the telephone pole.
22. The adjacent sides of a parallelogram are 6 feet and 10 feet and they make an angle of 120° with each other. Find the length of the longer diagonal.
23. At a certain distance, Ayla measured the angle of elevation of the peak of a hill to be equal to 15°. After travelling 100 km . towards the hill, she found the angle of elevation of the peak of the hill to be 60°. What is the height of the hill?
24. From the top of a tower, the angle of depression of the top and the base of a shorter tower are 15° and 60° respectively. If the shorter tower is 100 meters high, how high is the taller tower?
25. A man standing at a certain distance from a wall observes that the angles of elevation of the top and bottom of a mural painting are 45° and 30° respectively. He advances 3 feet towards the wall and observes that the angles of elevation of the top and bottom of the painting become 60° and 45° respectively. Find the height of the painting.
