I. Evaluate the following and express your answers in rectangular form.

1. $\frac{\frac{\sqrt{3}}{2}-\frac{1}{2} i}{8 \operatorname{cis} 120^{\circ}}$
2. $\left(2 \operatorname{cis} 60^{\circ}\right)^{2}\left(\frac{1}{\sqrt{2}} \operatorname{cis} 60^{\circ}\right)^{-4}$
3. $\frac{\left(4 \operatorname{cis} 80^{\circ}\right)^{2}}{\left(2 e^{\frac{5 \pi}{36} i}\right)(\sqrt{2}+\sqrt{2} i)}$
4. $\frac{\left(16 \operatorname{cis} 41^{\circ}\right)\left(6 \operatorname{cis} 64^{\circ}\right)}{(1+\sqrt{3} i)^{6}}$
II. Do as indicated.
5. Express the following in polar and Euler's form.
(a) $2 \sqrt{3}-2 i$
(b) -3
(c) $i-1$
(d) $\cos 240^{\circ}-i \sin 240^{\circ}$
(e) $-\cos 100^{\circ}-i \sin 100^{\circ}$
6. Find the three cube roots of $8 \operatorname{cis} 120^{\circ}$.
7. Find the five fifth roots of $16 i-16 \sqrt{3}$
8. Solve for all complex values of z in rectangular form.
(a) $z^{4}=-8+8 \sqrt{3} i$
(b) $z^{6}+64=0$
(c) $\sqrt{2} z^{3}=1-I$
III. Determine how many triangles can be formed given the following conditions. If exactly one exists, solve for the triangle.
9. $a=1, b=2, c=3$
10. $A=30^{\circ}, a=7, b=6$
11. $B=60^{\circ}, a=6, b=3$
12. $A=120^{\circ}, b=10, c=6$
IV. Solve the following
13. From a point A at the base of a mountain, the angle of elevation of the top B is 60°. After ascending the mountain 1 km . at an inclination of 30° and reaching point C , one finds the angle ACB to measure 135°. Determine the height of the mountain.
14. A metal frame has the shape of an isoceles trapezoid with base angles 75°, base 7 ft . and legs measuring 7 ft . How long is the diagonal of the brace?
15. From A, a pilot flew a course of 60° for 500 km . to B. From B, he proceeded 800 km to C on a course of 120°. What is the direction and distance of a flight from C to A ? What is the bearing of C from A?
