I. Variations.

1. If a function $f(x)$ varies inversely as the cube of x , find the value of $\frac{f(2)}{f(3)}$.
2. The volume of a cone varies jointly as the square of the radius of the base and the height. If the radius of the base of the cone is 2 cm . and it's height is 3 cm ., the volume of the cone is $4 \pi \mathrm{~cm}^{3}$. If we want the height of the cone to be 27 cm without changing the volume, what should be the radius of the base of the cone?
3. If p varies directly as q and inversely as the square root of r, what is the effect on p if q is doubled and r is quadrupled?
II. Sequences and Series.
4. If the sequence $2,6,10, \ldots$ form an AP , which term is 106 ?
5. Evaluate $\sum_{k=0}^{4} k(k-2)$
6. Find the value of x such that $2 x+1, x-2$ and $3 x+4$ form an arithmetic sequence.
7. The sum of the first three numbers of an arithmetic progression is 42 . If the product of the first number and the second number in the progression is 140 , find the sum of the first twenty terms of the progression.
8. Show that if $n \in \mathbb{N}, n \neq 1$, then $\frac{1}{\log _{2} 5}+\frac{1}{\log _{3} 5}+\frac{1}{\log _{4} 5}+\cdots+\frac{1}{\log _{n} 5}=\log _{5} n$! where $n!=1 \cdot 2 \cdots n$.
9. Let $f(x)=29+26 x+23 x^{2}+\cdots+t_{k} x^{k}$ be a polynomial function. Determine the value of k so that the remainder when $f(x)$ is divided by $(x-1)$ is 10 .
10. Show that $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x^{2}+x+1\right)$.
11. Simplify $2^{2009}-2^{2008}-2^{2007}-\cdots-4-2-1$.
12. Show that if u, v, and w form a geometric progression then $\log u, \log v$ and $\log w$ form an arithmetic progression.
13. A harmonic progression is a sequence of numbers whose reciprocals form an arithmetic progression. Insert two harmonic means between 4 and 8 .

III. Supplementary Exercises

1. Evaluate $\left(\log _{2} 3\right)\left(\log _{3} 4\right)\left(\log _{4} 5\right) \cdots\left(\log _{2009} 2010\right)$.
2. If $c=\log 196$ and $d=\log 56$, find $\log (0.175)^{4}$.
3. If $a=\log _{12} 18$ and $b=\log _{24} 52$, find $a b+5(a-b)$.

Examples from CAT by Castillo
Courtesy of manjologs

