UP SCHOOL OF STATISTICS STUDENT COUNCIL
Edueation and Research

$\boldsymbol{\omega}$ erho.weebly.com $\boldsymbol{\square}$ erhomyhero@gmail.com
f/erhoismyhero |
E@erhomyhero
M53_LE4_003

Mathematics 53
Fourth Long Examination

Elementary Analysis I
Second Semester AY 2015-2016

This is an 80-minute exam. Except for Part V, provide neat, complete and organized solutions, and box your final answers. Use black or blue non-erasable ink only. Any form of cheating in examinations shall be subject to disciplinary action.
I. Evaluate the following integrals.
(4 pts each)

1. $\int 4 x(2 x-5)^{19} d x$
2. $\int_{0}^{\pi / 4}(\tan x-\cos x) \tan x d x$
3. $\int_{1}^{4} \frac{24 x}{3 x+6+|3 x-6|} d x$
4. $\int \frac{\cos (\sqrt[3]{x}) \sin ^{2}(\sqrt[3]{x})}{\sqrt[3]{x^{2}}} d x$
II. Let R be the shaded region bounded by the graphs of $C_{1}: y=\frac{x^{3}+1}{3}, C_{2}: y=x^{2}-1$, and the x-axis as shown below. SET UP the definite integral(s) equal to:
5. The area of R.
(3 pts)
6. The volume of the solid formed when R is revolved about the line $x=3$
(a) using washers.
(3 pts)
(b) using cylindrical shells.
(3 pts)
7. The arc length of the graph of $y=\frac{x^{3}+1}{3}$ from the point $(-1,0)$ to the point $(2,3)$.
(2 pts)

III. Suppose that a particle on the origin travels along a straight path with an initial velocity of $4 \mathrm{~m} / \mathrm{s}$, and for any time $t \geq 0$, its acceleration is given by $a(t)=6 t+2$.
8. Find the position function $s(t)$ of the particle at any time t.
9. How far is the particle from the origin at time $t=1$?
IV. Suppose $F(x)=\int_{3 x}^{\frac{3 \pi}{2}} \sin ^{5} t d t$, where x is any real number.
10. Evaluate $F\left(\frac{\pi}{2}\right)$.
11. Find $F^{\prime}(x)$.
V. Write TRUE if the statement is correct, and FALSE otherwise.
12. The average value of $y=\cos x$ over the interval $[a, b]$ is equal to the value of the slope of the line joining the points $(a, \sin a)$ and $(b, \sin b)$.
13. If $f(x)$ is a function and c is in the domain of f, then $\int_{a}^{b} f(c) d x=f(c)(b-a)$.
14. If f is continuous on $[a, b]$ and $\int_{a}^{b} f(x) d x=0$, then f is only either increasing on $[a, b]$ or decreasing on $[a, b]$.
15. An antiderivative of $f(x)=-\csc x \cot ^{2} x-\csc ^{3} x$ is $g(x)=\csc x \cot x$.
16. If n is a positive integer and $0<\mathrm{k}<1$, then $\int_{n}^{n+k} \llbracket x \rrbracket d x=n k$.
