

UP SCHOOL OF STATISTICS STUDENT COUNCIL

Education and Research

erho.weebly.com | erhomyhero@gmail.com | / erhoismyhero | @@erhomyhero

Mathematics 54 Second Long Exam

M54_LE2_001 Elementary Analysis II 1st Semester AY 2016-2017

This is an 80-minute exam. Except for Part VI, provide neat, complete and organized solutions, and box your final answers. Use black or blue non-erasable ink only. Any form of cheating in examinations shall be subject to disciplinary action.

- I. Given the conic with equation $4(y-4)^2 9x^2 = 36$.
 - 1. Identify the center, vertices, foci and endpoints of the conjugate axis.
 - 2. Sketch the graph of the conic. Label important points with their coordinates.
- II. Given a curve with parametric equations $x = \ln(t-1) + (t-1)^{-1}$, $y = \ln(t-1)$ where t > 1.
 - 1. Find the values of t where the curve has horizontal and vertical tangent lines. (3 points)
 - 2. Evaluate $\left. \frac{d^2 y}{dx^2} \right|_{t=2}$ without eliminating the parameter t. (2 points)
 - 3. SET UP the integral (in terms of t) equal to the arc length of the curve from the point where t = 2 to the point $(1 + e^{-1}, 1)$.
 - 4. Find a Cartesian equation for the curve of the form x = f(y). (2 points)
- III. Find a Cartesian equation of the tangent line to the curve $r = 5 + 4\sin\theta$ at the point where $\theta = \frac{\pi}{6}$. (5 points)
- IV. Find a polar equation, in the form $r = f(\theta)$, of the conic with eccentricity $\frac{3}{4}$, a focus at (0,0) and corresponding directrix $x = -\frac{5}{3}$.
- V. Let $C_1: r = \sin \theta$ and $C_2: r = \cos 2\theta$ as shown in the figure.
 - 1. Find the polar coordinates (r, θ) of the points A, B and C. (3 points)
 - 2. Determine the subinterval of $\theta \in [0, 2\pi]$ that will trace the petal containing the point *B*. (1 point)
 - 3. Using the formulas for arclength and area of polar curves, SET UP the integral(s) equal to the following: (3 points each)
 - (a) the area of the shaded region
 - (b) the length of the arc traced counterclockwise along the curve C_1 from point C to point A

(6 points)

VI. Write the CAPITAL letter of the correct answer.

(1 point each)

1. Which of the following curves is symmetric with respect to the polar axis?

A)
$$\theta = \sin 2$$
 B) $r = 2\sin \theta$ C) $r = 2\sin 2\theta$ D) $r = 2 + 2\sin \theta$

2. Which of the following is a polar equation for the graph of the limaçon below?

*** END OF EXAM *** Total: 40 points