

M54_LE2_001

Mathematics 54

Second Long Exam

Elementary Analysis II
1st Semester AY 2016-2017

This is an 80-minute exam. Except for Part VI, provide neat, complete and organized solutions, and box your final answers. Use black or blue non-erasable ink only. Any form of cheating in examinations shall be subject to disciplinary action.
I. Given the conic with equation $4(y-4)^{2}-9 x^{2}=36$.
(6 points)

1. Identify the center, vertices, foci and endpoints of the conjugate axis.
2. Sketch the graph of the conic. Label important points with their coordinates.
II. Given a curve with parametric equations $x=\ln (t-1)+(t-1)^{-1}, y=\ln (t-1)$ where $t>1$.
3. Find the values of t where the curve has horizontal and vertical tangent lines.
4. Evaluate $\left.\frac{d^{2} y}{d x^{2}}\right|_{t=2}$ without eliminating the parameter t.
(2 points)
5. SET UP the integral (in terms of t) equal to the arc length of the curve from the point where $t=2$ to the point $\left(1+e^{-1}, 1\right)$.
(3 points)
6. Find a Cartesian equation for the curve of the form $x=f(y)$.
(2 points)
III. Find a Cartesian equation of the tangent line to the curve $r=5+4 \sin \theta$ at the point where $\theta=\frac{\pi}{6}$. (5 points)
IV. Find a polar equation, in the form $r=f(\theta)$, of the conic with eccentricity $\frac{3}{4}$, a focus at $(0,0)$ and corresponding directrix $x=-\frac{5}{3}$.
(2 points)
V. Let $C_{1}: r=\sin \theta$ and $C_{2}: r=\cos 2 \theta$ as shown in the figure.
7. Find the polar coordinates (r, θ) of the points A, B and C.
(3 points)
8. Determine the subinterval of $\theta \in[0,2 \pi]$ that will trace the petal containing the point B. (1 point)
9. Using the formulas for arclength and area of polar curves, SET UP the integral(s) equal to the following:
(3 points each)
(a) the area of the shaded region
(b) the length of the arc traced counterclockwise along the curve C_{1} from point C to point A

10. Which of the following curves is symmetric with respect to the polar axis?
A) $\theta=\sin 2$
B) $r=2 \sin \theta$
C) $r=2 \sin 2 \theta$
D) $r=2+2 \sin \theta$
11. Which of the following is a polar equation for the graph of the limaçon below?

A) $3+2 \cos \theta$
B) $3-2 \cos \theta$
C) $5+2 \cos \theta$
D) $5-2 \cos \theta$
12. What is the graph of the equation $r=\frac{2}{\cos \theta}$?
A) horizontal line
B) vertical line
C) parabola
D) circle
13. Which of the following is satisfied by the conic with equation $16 x^{2}+9 y^{2}=144$?
A) $a=3, b=4, c=5$
B) $a=4, b=3, c=5$
C) $a=3, b=4, c=\sqrt{7}$
D) $a=4, b=3, c=\sqrt{7}$
14. Let E_{1} and E_{2} be the endpoints of the latus rectum of the parabola $y^{2}=4\left(\frac{1}{2}\right) x$, and let P be the point on the directrix nearest E_{1}. What is the distance between E_{2} and P ?
A) $\sqrt{2}$
B) $\sqrt{3}$
C) $\sqrt{4}$
D) $\sqrt{5}$

For items 6 and 7:
The vertices of a conic are 2 units apart while its foci are 3 units apart. Suppose that a point P on the conic is $\frac{1}{2}$ unit away from the nearest directrix.
6. What is the eccentricity of the conic?
A) $\frac{2}{3}$
B) $\frac{3}{2}$
C) $\frac{3}{4}$
D) $\frac{4}{3}$
7. How far is the point P from the nearest focus?
A) $\frac{2}{3}$
B) $\frac{3}{2}$
C) $\frac{3}{4}$
D) $\frac{4}{3}$

END OF EXAM ***
Total: 40 points

