

EDUCATION AND RESEARCH

M54_LE3_002

Mathematics 54
 Third Long Exam

This exam is for 80 minutes only. Use black or blue non-erasable ink only. Show neat and complete solutions, and box all final answers. The use of electronic devices is not allowed during the exam.
Any form of cheating in examinations or any act of dishonesty in relation to studies, such as plagiarism, shall be subject to disciplinary action.
I. Write TRUE if the statement is always true. Otherwise, write FALSE.
[1 pt each]

1. The projection of \vec{a} onto \vec{b} is parallel to \vec{a}.
2. The graph of the equation $z=x^{2}+y^{2}$ is a hyperbolic paraboloid.
3. If two lines ℓ_{1} and ℓ_{2} do not intersect, then ℓ_{1} is parallel to ℓ_{2}.
4. If $\vec{a}+\vec{b}=\overrightarrow{0}$ and $\vec{a}-\vec{b}=\overrightarrow{0}$, then $\vec{a}=\vec{b}=\overrightarrow{0}$.
5. If $\vec{u} \cdot(\vec{v} \times \vec{w})=0$, then $\vec{u} \times \vec{v}$ is orthogonal to \vec{w}.
II. Given the vectors

$$
\vec{u}=\langle-1,1,2\rangle, \vec{v}=\langle 6,0,3\rangle, \vec{w}=\langle 0,3,-4\rangle
$$

1. Show that \vec{u} and \vec{v} are orthogonal.
2. Find the vector of length 3 with direction opposite to the direction of \vec{w}.
3. Find the volume of the parallelepiped defined by the vectors \vec{u}, \vec{v}, and \vec{w}.
III. Given a point $P(2,1,-1)$ two lines $\ell_{1}:\left\{\begin{array}{l}x=3+t \\ y=2+t \\ z=-6-2 t\end{array}\right.$ and $\ell_{2}: \frac{x+2}{3}=y+1=\frac{z-2}{-4}$.
4. Find the equation (in center-radius form) of the sphere centered at P and passing through the point on ℓ_{1} with x-coordinate equal to 0
5. Find the point of intersection of ℓ_{1} and ℓ_{2}.
6. Find the distance between P and ℓ_{1}.
[4 pts]
IV. Consider the planes $\pi_{1}: 2 x-y+3 z+5=0$ and $\pi_{2}: x+2 y-2 z-4=0$, and the point $Q(0,7,-4)$.
7. Find an equation of the plane passing through Q and perpendicular to π_{1} and π_{2}.
8. Find symmetric equations of the line passing through Q and perpendicular to π_{1}.
9. Find the distance between Q and π_{2}.
V. Consider the equation $z=x^{2}$
10. Sketch the portion of the cylinder with the given equation in the first octant.
11. Let C be the curve in the $x z$-plane with the given equation. Find an equation of the surface of revolution obtained by revolving C about the z-axis.
[2 pts]
VI. Given the quadric surface with equation $4-z=\frac{x^{2}}{4}+\frac{y^{2}}{9}$.
12. Find the equation of the traces on the $x y$-, $x z$-, and $y z$-planes. Identify these traces.
13. Identify the surface.
14. Sketch the graph of the surface. Label important points on the graph.

END OF EXAM TOTAL: 40 points

