General Direction: Use black or blue ballpen. Show neat and clean solutions to obtain full points.

- I. Match the equations to their corresponding graphs.
 - 1. $x = z^3$
 - 2. $x^2 + z^2 = y^6$
 - 3. $4x^2 4y^2 = z$ 4. $x^2 - y^2 + z^2 = 1$
 - 5. $4x^2 + 9y^2 = 36 4z^2$

- II. Do as indicated.
 - 1. Consider the vector $\vec{V} = \langle 5, -4, -2\sqrt{2} \rangle$.
 - a. Find the *direction cosines* of \vec{V} .
 - b. Let $\vec{W} = \langle 3, 4, 0 \rangle$. Find the vector projection of \vec{V} onto \vec{W} .
 - 2. Consider the parallelepiped which is composed of vectors $\vec{A} = \langle -1, -2, 1 \rangle$, $\vec{B} = \langle 0, 2, 0 \rangle$ and $\vec{C} = \langle 2, 3, 3 \rangle$. Determine the volume of the parallelepiped.

- 3. Given the sphere $x^2 + y^2 + z^2 6x + y + 7 = 0$.
 - a. Find the center and radius of the sphere.
 - b. Determine the parametric equation of the line passing the center of the sphere and is parallel to the vector (3, -2, 1).
- 4. Find the equation of the plane consisting the points $P_1(3,1,5)$, $P_2(-1,-1,-1)$ and $P_3(-2,2,4)$.
- 5. Consider the planes $\pi_1: -3x + y 4z = 1$ and $\pi_2: x y + 5z = 3$. Determine the *symmetric* and *parametric equations* of the line of intersection of the two planes.
- 6. Find the distance between the plane π : 4x + 2y 4z = 3 and the point (1, -1, 3/2).

END OF EXAM