MATHEMATICS 54: ELEMENTARY ANALYSIS II

 SAMPLE THIRD LONG EXAMGeneral Direction: Use black or blue ballpen. Show neat and clean solutions to obtain full points.
I. Match the equations to their corresponding graphs.

1. $x=z^{3}$
2. $x^{2}+z^{2}=y^{6}$
3. $4 x^{2}-4 y^{2}=z$
a.
4. $x^{2}-y^{2}+z^{2}=1$
5. $4 x^{2}+9 y^{2}=36-4 z^{2}$
b.

c.
d.

e.

f.

II. Do as indicated.
6. Consider the vector $\vec{V}=\langle 5,-4,-2 \sqrt{2}\rangle$.
a. Find the direction cosines of \vec{V}.
b. Let $\vec{W}=\langle 3,4,0\rangle$. Find the vector projection of \vec{V} onto \vec{W}.
7. Consider the parallelepiped which is composed of vectors $\vec{A}=\langle-1,-2,1\rangle, \vec{B}=\langle 0,2,0\rangle$ and $\vec{C}=\langle 2,3,3\rangle$. Determine the volume of the parallelepiped.
8. Given the sphere $x^{2}+y^{2}+z^{2}-6 x+y+7=0$.
a. Find the center and radius of the sphere.
b. Determine the parametric equation of the line passing the center of the sphere and is parallel to the vector $\langle 3,-2,1\rangle$.
9. Find the equation of the plane consisting the points $P_{1}(3,1,5), P_{2}(-1,-1,-1)$ and $P_{3}(-2,2,4)$.
10. Consider the planes $\pi_{1}:-3 x+y-4 z=1$ and $\pi_{2}: x-y+5 z=3$. Determine the symmetric and parametric equations of the line of intersection of the two planes.
11. Find the distance between the plane $\pi: 4 x+2 y-4 z=3$ and the point $(1,-1,3 / 2)$.
