General Direction: Use black or blue ballpen. Show neat and complete solution to obtain full points.
I. Write TRUE if the statement is always true. Otherwise, write FALSE.

1. The asymptotes of the hyperbolas $x^{2}-y^{2}=a^{2}$ and $y^{2}-x^{2}=a^{2}$ are the same.
2. Suppose that the parametric curve is smooth on $[a, b]$, then for $c \in[a, b]$, the curve is smooth on $[a, c]$.
3. The graph of a polar equation $r=2 \cos ^{2}(\theta / 2)$ is a limacon.
4. The graph of $r=1+3 \sin \theta$ is similar to the graph of $r=-1+3 \sin \theta$.
5. There exists a rose polar curve with 30 petals.
II. Do as indicated.
6. Consider the parametric equations given by $C: x=t e^{t}$ and $y=e^{2 t}$. Determine the value(s) of t in which C is concave up or down.

5 points
2. An ellipse is located at QII and QIII. The points $(-2,1)$ and $(-1,-4)$ are the vertex and endpoint of the minor axis, respectively.
a. Determine the center and foci of the ellipse.

3 points
b. Give the standard equation of the ellipse.
3. Determine the conic: $4 x^{2}-24 x-40-y^{2}=0$. Sketch the conic and label its focus and vertex.
4. Determine the cartesian equation of the line normal to $r=1+\cos ^{2} \theta$ at $\theta=\pi / 4$.

MORE AT THE BACK

Mathematics 54
General Direction: Use black or blue ballpen. Show neat and complete solution to obtain full points.
I. Write TRUE if the statement is always true. Otherwise, write FALSE.

1 point each

1. The asymptotes of the hyperbolas $x^{2}-y^{2}=a^{2}$ and $y^{2}-x^{2}=a^{2}$ are the same.
2. Suppose that the parametric curve is smooth on $[a, b]$, then for $c \in[a, b]$, the curve is smooth on $[a, c]$.
3. The graph of a polar equation $r=2 \cos ^{2}(\theta / 2)$ is a limacon.
4. The graph of $r=1+3 \sin \theta$ is similar to the graph of $r=-1+3 \sin \theta$.
5. There exists a rose polar curve with 30 petals.
II. Do as indicated.
6. Consider the parametric equations given by $C: x=t e^{t}$ and $y=e^{2 t}$. Determine the value(s) of t in which C is concave up or down.

5 points
2. An ellipse is located at QII and QIII. The points $(-2,1)$ and $(-1,-4)$ are the vertex and endpoint of the minor axis, respectively.
a. Determine the center and foci of the ellipse.

3 points
b. Give the standard equation of the ellipse.
3. Determine the conic: $4 x^{2}-24 x-40-y^{2}=0$. Sketch the conic and label its focus and vertex.
4. Determine the cartesian equation of the line normal to $r=1+\cos ^{2} \theta$ at $\theta=\pi / 4$.
5. Let $C_{1}: r=2$ and $C_{2}: r=1+2 \cos \theta$.
a. Find the angle θ such that C_{2} passes the pole.
b. Find the angle θ such that C_{2} intersects C_{1}.
c. Setup the definite integral for the area of the region R outside the limacon but inside the circle.
d. Setup the circumference of the region.

6. Let $r=\frac{4}{2+2 \cos \theta}$.
a. Describe the conic and determine the polar equation of its directirx (directrices).

2 point
b. Give its cartesian equation.

END OF EXAM
TOTAL: 35 POINTS
5. Let $C_{1}: r=2$ and $C_{2}: r=1+2 \cos \theta$.
a. Find the angle θ such that C_{2} passes the pole.

1 point
b. Find the angle θ such that C_{2} intersects C_{1}.
c. Setup the definite integral for the area of the region R outside the limacon but inside the circle.
d. Setup the circumference of the region.

1 point
3 points
3 points

6. Let $r=\frac{4}{2+2 \cos \theta}$.
a. Describe the conic and determine the polar equation of its directirx (directrices).
b. Give its cartesian equation.

2 point
3 points

