General Direction: Use black or blue ballpen. Show neat and complete solution to obtain full points.

I. Write TRUE if the statement is always true. Otherwise, write FALSE.

- 1. The asymptotes of the hyperbolas $x^2 y^2 = a^2$ and $y^2 x^2 = a^2$ are the same.
- 2. Suppose that the parametric curve is smooth on [a, b], then for $c \in [a, b]$, the curve is smooth on [a, c].
- 3. The graph of a polar equation $r = 2\cos^2(\theta/2)$ is a limacon.
- 4. The graph of $r = 1 + 3\sin\theta$ is similar to the graph of $r = -1 + 3\sin\theta$.
- 5. There exists a rose polar curve with 30 petals.

II. Do as indicated.

- 1. Consider the parametric equations given by $C: x = te^t$ and $y = e^{2t}$. Determine the value(s) of t in which C is concave up or down. 5 points
- 2. An ellipse is located at QII and QIII. The points (-2, 1) and (-1, -4) are the vertex and endpoint of the minor axis, respectively.
 - a. Determine the center and foci of the ellipse.
 - b. Give the standard equation of the ellipse.
- 3. Determine the conic: $4x^2 24x 40 y^2 = 0$. Sketch the conic and label its focus and vertex. 4 points
- 4. Determine the cartesian equation of the line normal to $r = 1 + \cos^2 \theta$ at $\theta = \pi/4$. 4 points

MORE AT THE BACK

Mathematics 54

Second Long Exam

1 point each

1 point

General Direction: Use black or blue ballpen. Show neat and complete solution to obtain full points.

- I. Write TRUE if the statement is always true. Otherwise, write FALSE.
 - 1. The asymptotes of the hyperbolas $x^2 y^2 = a^2$ and $y^2 x^2 = a^2$ are the same.
 - 2. Suppose that the parametric curve is smooth on [a, b], then for $c \in [a, b]$, the curve is smooth on [a, c].
 - 3. The graph of a polar equation $r = 2\cos^2(\theta/2)$ is a limacon.
 - 4. The graph of $r = 1 + 3\sin\theta$ is similar to the graph of $r = -1 + 3\sin\theta$.
 - 5. There exists a rose polar curve with 30 petals.

II. Do as indicated.

- 1. Consider the parametric equations given by $C: x = te^t$ and $y = e^{2t}$. Determine the value(s) of t in which C is concave up or down. 5 points
- 2. An ellipse is located at QII and QIII. The points (-2, 1) and (-1, -4) are the vertex and endpoint of the minor axis, respectively.
 - a. Determine the center and foci of the ellipse. 3 points
 - b. Give the standard equation of the ellipse.
- 3. Determine the conic: $4x^2 24x 40 y^2 = 0$. Sketch the conic and label its focus and vertex. 4 points
- 4. Determine the cartesian equation of the line normal to $r = 1 + \cos^2 \theta$ at $\theta = \pi/4$. 4 points

1 point each

3 points

1 point

5. Let $C_1 : r = 2$ and $C_2 : r = 1 + 2\cos\theta$.

- a. Find the angle θ such that C_2 passes the pole.
- b. Find the angle θ such that C_2 intersects C_1 .
- c. Setup the definite integral for the area of the region R outside the limacon but inside the circle.
- d. Setup the circumference of the region.

6. Let $r = \frac{4}{2 + 2\cos\theta}$.

a. Describe the conic and determine the polar equation of its directirx (directrices).
b. Give its cartesian equation. **2 point 3 points**

END OF EXAM TOTAL: 35 POINTS

5. Let $C_1 : r = 2$ and $C_2 : r = 1 + 2\cos\theta$.

a. Find the angle θ such that C_2 passes the pole.	$1 \operatorname{point}$
b. Find the angle θ such that C_2 intersects C_1 .	$1 {\rm point}$
c. Setup the definite integral for the area of the region R outside the limacon but inside the circle.	3 points
d. Setup the circumference of the region.	3 points

6. Let $r = \frac{4}{2 + 2\cos\theta}$.

a. Describe the conic and determine the polar equation of its directirx (directrices).

b. Give its cartesian equation.

2 point 3 points

END OF EXAM TOTAL: 35 POINTS

1 point 1 point 3 points

3 points