

$\boldsymbol{\omega}$ erho.weebly.com| ${ }^{\text {® }}$ erhomyhero@gmail.com $\mid \boldsymbol{f} /$ erhoismyhero $\mid \mathbf{\Xi}$ @erhomyhero

Mathematics 55
Final Exam

Elementary Analysis III
1st Semester AY 2014-2015
I. Let $f(x, y)=x^{2}+y^{2}+x^{2} y-1$.

1. Find the rate of change of f at the point $P(2,1)$ along $\vec{v}=\langle 1,-1\rangle$.
2. Find all relative extrema and saddle points of f.
II. Set up a triple integral in rectangular coordinates that gives the volume of the solid enclosed by the plane $x-2 y+z=2$ and the three coordinate planes.
(4pts)
III. Use spherical coordinates to find the mass of the solid in the first octant bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=4$ if the density at any point in the solid is $\delta(x, y, z)=$ $\sqrt{x^{2}+y^{2}+z^{2}}$
(5pts)
IV. Evaluate $\int_{C} \vec{F} \cdot d \vec{R}$ where $\vec{F}(x, y, z)=\left\langle x+y, z, x^{2} y\right\rangle$ and C is given by the vector function $\vec{R}(t)=\left\langle 2 t, t^{2}, t^{4}\right\rangle, t \in$ $[0,1]$.
(5pts)
V. Given $\vec{F}(x, y)=\left\langle 2 x y \cos \left(x^{2}\right), \sin \left(x^{2}\right)-6 y\right\rangle$:
3. Show that \vec{F} is conservative.
(2pts)
4. Find a potential function for \vec{F}.
(3pts)
5. Use the Fundamental Theorem for Line Integrals to evaluate $\int_{C} \vec{F} \cdot d \vec{R}$ if C is any smooth arc from $(0,1)$ to $\left(\sqrt{\frac{\pi}{2}}, 2\right)$.
VI. Use Green's Theorem to evaluate $\oint_{C}\left(\cosh \left(x^{2}+1\right)-2 y\right) d x+\left(3 x+\tan ^{-1}\left(y^{2}-1\right)\right) d y$ where C is the circle defined by the vector function $\vec{R}(t)=\langle 2 \cos t, 2 \sin t\rangle, t \in[0,2 \pi]$
VII. Compute the flux of $\vec{F}(x, y, z)=\langle x, y, z\rangle$ across the positively oriented portion of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane.
(5pts)
VIII. Determine the convergence or divergence of each of the following.
6. $\left\{\frac{\ln n}{n}\right\}_{n=2}^{\infty}$
(2pts)
7. $\sum_{n=2}^{\infty} \frac{\ln n}{n}$
(3pts)
IX. Consider the series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{2 n+1}$.
8. Find its radius of convergence.
9. Determine the values of x for which the series converges.
X. Given $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$
10. Determine the Maclaurin series for $x e^{x^{2}}$.
11. Hence, find the sum $\sum_{n=0}^{\infty} \frac{1}{2^{2 n+1} n!}$.

END OF EXAM
Total: 55 points

