\boldsymbol{W} erho.weebly.com ${ }^{\text {■ }}$ erhomyhero@gmail.com $\mid \boldsymbol{f} /$ erhoismyhero $\mid \boldsymbol{\Xi}$ @erhomyhero

M55_LE1_001

Mathematics 55

First Long Exam
2nd Semester AY 2014-2015

1. Let $f(x, y)=\frac{x^{2}}{2}-y^{4}$.
(a) Determine the directional derivative of f at $(-2,1)$ along $\langle 3,-4\rangle$.
(b) Give a direction vector from the point $\left(3, \frac{1}{2}\right)$ where the following happens:
i. f decreases most rapidly
ii. the rate of change of f is zero
2. Suppose $f(x, y)$ is differentiable on \mathbb{R}^{2} with $f_{x}(x, y)=x^{2}+2 y$ and $f_{y}(x, y)=2 x-y$. At each critical point, use the Second Derivative Test to determine whether there is a relative minimum, relative maximum or saddle point.
3. Use the method of Lagrange multipliers to find the absolute extreme values of $f(x, y)=1-y^{2} x$ subject to the constraint $x^{2}+y^{2}-2 y=1$.
4. Let S be the surface defined parametrically by $x=v \cos w, y=w \cos w, z=v+w$ where $v, w \in \mathbb{R}$. Find the equation of the tangent plane S at the point $(v, w)=(0, \pi)$.
5. Evaluate the double integral $\int_{0}^{1} \int_{2 y}^{2} \sec ^{2}\left(x^{2}\right) d x d y$.
6. Set-up an iterated double integral in polar coordinates equivalent to the double integral

$$
\int_{-2}^{0} \int_{2}^{2+\sqrt{4-x^{2}}} \frac{x}{x^{2}+y^{2}} d y d x
$$

7. Find the surface area of the portion of the hemisphere $z=\sqrt{5-x^{2}-y^{2}}$ between the planes $z=1$ and $z=2$.
8. Consider a lamina in the shape of the region bounded by $y^{2}=16-4 x^{2}$ and $y^{2}=x+2$ (see figure below). Set-up the iterated integral(s) equal to the mass of the lamina if its density at each point (x, y) is given by $\delta(x, y)=4+y$.

