

UP SCHOOL OF STATISTICS STUDENT COUNCIL

Education and Research

🖾 erho.weebly.com | 🖻 erhomyhero@gmail.com | 🖬 /erhoismyhero | 🗳 @erhomyhero

Mathematics 55 Second Long Exam

M55_LE2_001 Elementary Analysis III 2nd Semester AY 2014-2015

- 1. Let G be a solid in the first octant bounded below by the cone $z = \sqrt{\frac{x^2 + y^2}{3}}$ and above the plane z = 3. Suppose that the density at a point (x, y, z) in G is f(x, y, z) = 2z.
 - (a) Set up an iterated triple integral that gives the mass of G using rectangular coordinates and spherical coordinates.
 - (b) Find the mass of G using spherical coordinates.
- 2. Let $\vec{F}(x, y, z) = \langle zye^{x^2}, xze^{y^2}, xye^{z^2} \rangle$. Find the divergence of \vec{F} and curl of \vec{F} .
- 3. Let $\vec{F}(x, y, z) = \langle 2x \cos y, e^z x^2 \sin y, y e^z \rangle$.
 - (a) Show that \vec{F} is conservative by finding a potential function for \vec{F} .
 - (b) Find the work done by \vec{F} on a particle that moves on any smooth curve from the point (0, 1, 0) to the point (2, 0, 3).
- 4. Evaluate $\int_C (xy + y^2) ds$ where C is the lower half of the circle $x^2 + y^2 = 9$, described in the counterclockwise direction.
- 5. Evaluate $\int_C y \, dx + z \, dy x \, dz$ where C is the line segment from (0,1,2) to (1,3,6) followed by the line segment from (1,3,6) to (1,3,2).
- 6. Let $\vec{F}(x,y) = \langle 2xy, xy + x^2 \rangle$. Using Green's Theorem, evaluate $\int_C \vec{F} \cdot d\vec{R}$, where C is the triangular path traced in the counterclockwise direction with vertices at the points (0,0), (1,0) and (2,1).
- 7. Find the flux of $\vec{F}(x, y, z) = \langle x, y, z \rangle$ across the part of the positively-oriented paraboloid $z = 1 4x^2 4y^2$ above the *xy*-plane.

END OF EXAM