

UP SCHOOL OF STATISTICS STUDENT COUNCIL
 Education and Resealich

EDUCATION AND RESEARCH
$\boldsymbol{\omega}$ erho.weebly.com ${ }^{\text {® }}$ erhomyhero@gmail.com| $\mathbf{f} /$ erhoismyhero $\mid \mathbf{B}$ @erhomyhero

Mathematics 55
Second Long Exam

Elementary Analysis III
2nd Semester AY 2014-2015

1. Let G be a solid in the first octant bounded below by the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ and above the plane $z=3$. Suppose that the density at a point (x, y, z) in G is $f(x, y, z)=2 z$.
(a) Set up an iterated triple integral that gives the mass of G using rectangular coordinates and spherical coordinates.
(b) Find the mass of G using spherical coordinates.
2. Let $\vec{F}(x, y, z)=\left\langle z y e^{x^{2}}, x z e^{y^{2}}, x y e^{z^{2}}\right\rangle$. Find the divergence of \vec{F} and curl of \vec{F}.
3. Let $\vec{F}(x, y, z)=\left\langle 2 x \cos y, e^{z}-x^{2} \sin y, y e^{z}\right\rangle$.
(a) Show that \vec{F} is conservative by finding a potential function for \vec{F}.
(b) Find the work done by \vec{F} on a particle that moves on any smooth curve from the point $(0,1,0)$ to the point ($2,0,3$).
4. Evaluate $\int_{C}\left(x y+y^{2}\right) d s$ where C is the lower half of the circle $x^{2}+y^{2}=9$, described in the counterclockwise direction.
5. Evaluate $\int_{C} y d x+z d y-x d z$ where C is the line segment from $(0,1,2)$ to $(1,3,6)$ followed by the line segment from $(1,3,6)$ to $(1,3,2)$.
6. Let $\vec{F}(x, y)=\left\langle 2 x y, x y+x^{2}\right\rangle$. Using Green's Theorem, evaluate $\int_{C} \vec{F} \cdot d \vec{R}$, where C is the triangular path traced in the counterclockwise direction with vertices at the points $(0,0),(1,0)$ and $(2,1)$.
7. Find the flux of $\vec{F}(x, y, z)=\langle x, y, z\rangle$ across the part of the positively-oriented paraboloid $z=1-4 x^{2}-4 y^{2}$ above the $x y$-plane.
