

UP SCHOOL OF STATISTICS STUDENT COUNCIL
 Education and Reseaich

M55_LE3_001

Mathematics 55
Third Long Exam

Elementary Analysis III
2nd Semester AY 2014-2015

1. The sequence $\left\{b_{n}\right\}_{n=1}^{+\infty}$ has a property that $b_{1}+b_{2}+\ldots+b_{n}=\cos ^{-1}\left(\frac{1}{n}\right)$ for all n. Determine if the series $\sum_{n=1}^{+\infty} b_{n}$ converges or diverges.
2. (a) Show that $\left\{\frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)}\right\}_{n=1}^{+\infty}$
(b) Use the Monotone Convergence Theorem to show that the sequence in (a) converges.
(2 pts)
3. (a) Verify that $\sum_{n=1}^{+\infty} \frac{1}{n^{2}} e^{1 / n}$ satisfies the requirements of the Integral Test.
(b) Use the Integral Test to determine if the series in (a) converges or diverges.
4. Given the series $\sum_{n=1}^{+\infty} \frac{1+\sin ^{2}(n)}{2 n}$.
(a) Explain why the Comparison Test fails when the given series is compared with the series $\sum_{n=1}^{+\infty} \frac{1}{n}$ (2 pts)
(b) Use the Comparison Test to determine if the given series converges or diverges.
5. Determine if the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
(a) $\sum_{n=1}^{+\infty}\left[\left(\frac{7}{5}\right)^{n}+\left(\frac{1}{n}\right)^{7 / 5}\right]$ (3 pts)
(b) $\sum_{n=1}^{+\infty}\left(\frac{\tan ^{-1}(n)}{2}\right)^{n}$
(3 pts)
(c) $\sum_{n=1}^{+\infty}(-1)^{n} \frac{2 n}{2 n \sqrt{n}+1}$
(6 pts)
6. (a) Show that the radius of convergence of the power series $\sum_{n=0}^{+\infty} \frac{(2 x+e)^{n}}{e^{n}+1}$ is $\frac{e}{2}$.
(4 pts)
(b) Find the interval of convergence of the power series in (a)
7. (a) Find the Taylor series of $\cos (x)$ centered at π.
(b) Use the Maclaurin series of $\cos (x)$ to find the series representation for $\int_{0}^{1} \cos \left(x^{3}\right) d x$.
