# UPSCHOOLOF STATISTICSSTUDENTCOUNCIL <br>  

PHTLOS SOPHTA

Mathematics 17
First Long Examination

College Algebra and Trigonometry
First Semester, AY 2012-2013
I. Write TRUE if the statement is always true, otherwise, write FALSE.

1. The domain and range of polynomial functions is $\mathbb{R}$.
2. The real part of the multiplicative inverse of $3-2 i$ is $\frac{1}{3}$.
3. The set of irrational numbers is closed under addition.
4. If $A \subseteq B$ and $C \subseteq B$, then $A \subseteq C$.
5. If $a \in \mathbb{R}$, then $\frac{1}{\left(\frac{1}{a}\right)}=a$.
II. Fill in the blanks.
6. Let O be the set of positive odd integers and P the set of prime numbers. $\qquad$ are the first 1 point five elements of $\mathrm{O} \backslash \mathrm{P}$.
7. If $A \subset B$ and $B \subset C$ and if $A$ contains 2 elements, $B$ contains 4 elements and $C$ contains 6 elements, then $\wp(A \cup B \cup C)$ has $\qquad$ elements.
8. The quotient when
9. In completely factored form, $4 x^{2}-y^{2}-12 x+10 y-16=$ $\qquad$ .
10. The factors of $3 a^{4}+3 a^{2} b^{2}+3 y^{4}$ are $\qquad$ .

3 points
6. In simplified form, $9 \sqrt{27 p^{2}}-4 p \sqrt{108}-2 \sqrt{48 p^{2}}=$ $\qquad$ .
7. The imaginary part of the conjugate of $2 i^{27}+i^{38}$ is $\qquad$ .
III. Do as indicated.

1. Simplify: $\left(\frac{(2 y)^{-3}+x^{-3}}{(2 y)^{-2}-x^{-2}} \div \frac{x^{2}-2 x y+4 y^{2}}{x^{4} y+x y^{4}}\right) \cdot\left(\frac{1}{x^{2}-y^{2}}-\frac{1}{x^{2}-x y+y^{2}}\right)$.
2. Simplify: $\frac{x-2+\frac{x-2}{x+2}}{x+\frac{3 x+12}{x+2}}$.
3. Simplify: $\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) \cdot\left(\frac{x}{x-1}\right)^{-1}$.
4. Express in the form $a+b i: \frac{\sqrt{-1}+2}{\sqrt{2}-\sqrt{-4}}$.
