UPSCHOOLOF STATISTICSSTUDENTCOUNCLL

PHTLOS SOPHTA

Mathematics 17
Third Long Examination

College Algebra and Trigonometry
First Semester, AY 2012-2013
I. Write TRUE if the statement is true. Otherwise, write FALSE.

1 point each

1. If $9^{x}=5$, then $81^{x}=45$.
2. If $-2 i$ is a root of the polynomial function $p(x)$ with real coefficients, then $x-2 i$ is a factor of p.
3. All functions are not symmetric with respect to the x-axis.
4. For all real numbers $a, 0<a<1, \log _{a} 4>\log _{a} 3$.
5. $f(x)=\frac{2 x^{3}}{1-x^{4}}$ is an odd function.
II. Do as indicated. Show your complete solution.

2 points each

1. Find the solution set of the equation $2^{3 x+1}=\frac{1}{2}^{x^{2}+1}$.
2. Find the value of k such that $x+3$ is a factor of $x^{3}+k x^{2}+11 x+33$.
3. Find the value of h such that $3 h-5,3 h+1, h / 2$ are the first second and third terms of a geometric sequence, respectively.
4. Evaluate: $\log _{x} x^{2}-\log _{2} 4$.
5. Find the polynomial $p(x)$ of lowest degree such that $-i$ is a simple root, 1 is another simple root and -1 is a root of multiplicity 3 .
III. Do as indicated. Show your complete solution.

4 points each

1. Given $f(x)=\frac{3 x+4}{x-8}$, find $\operatorname{dom} f, \operatorname{ran} f$ and f^{-1}.
2. Given $f(x)=\frac{x^{2}}{x^{2}-9}$ and $g(x)=\sqrt{25-x^{2}}$, find $f \circ g$ and its domain.
3. Solve for all $x \in \mathbb{C}$ such that $2 x^{4}+3 x^{3}+4 x^{2}+12 x+9=0$.
4. Solve for x in the equation $3+\log _{2}(2 x-1)=\log _{4} 9-\log _{2}(x-1)$.
5. Detective Ruzaki is well known for catching high-profile criminals with ease. Year after year, the number of criminals caught follows an arithmetic progression. In his first ten years of work, he caught a total of 240 criminals. Given that at his fifth year as a detective, he caught 22 criminals, how many more criminals did he catch each year?
IV. Given $f(x)= \begin{cases}x^{2}+4 x+4, x \leq-1 \\ 2-|x| & ,-1<x<1 \\ \frac{2 x-x^{2}}{2-x} & , 1 \leq x \leq 3, x \neq 2 \\ -2 & , x=2\end{cases}$

Sketch the graph of f. Give $\operatorname{dom} f$ and $\operatorname{ran} f$.

