

UP SCHOOL OF STATISTICS STUDENT COUNCIL

PHILOS SOPHIA

Mathematics 17
Fourth Long Examination

M17_LE4_003
College Algebra and Trigonometry
First Semester, AY 2011-2012

I. Write TRUE if the statement is correct, otherwise, write FALSE.

1 point each

- 1. The amplitude of $f(x) = \frac{1}{2 \sec x}$ is 2.
- 2. If $\cos \theta > 0$ and $\csc \theta < 0$ then $P(\theta) \in QII$.
- 3. The function $g(x) = \tan(\cos x)$ is odd.

4.
$$\sin\left(\frac{3\pi}{5}\right) = \cos\left(\frac{-\pi}{10}\right)$$
.

5. $\frac{5}{8}$ rev is coterminal with $-\frac{3\pi}{4}$ rad.

II. Do as indicated.

3 points each

- 1. Evaluate $\tan^2 \frac{\pi}{12} + \csc^2 \frac{\pi}{3} \sec^2 \frac{\pi}{12}$.
- 2. Find the distance travelled by the tip of a 5-inch hour hand after 2 hours and 30 minutes.
- 3. Find the domain and range of the function $f(x) = 3\csc(2x)$.
- 4. The terminal side of angle α passes through the point (5,-12). Find the 6 trigonometric values of angle α .
- III. Suppose $\cos \alpha = \frac{-1}{\sqrt{10}}$ and $\tan \alpha < 0$ and $\cot \beta = -2$ with $P(\beta) \in QIV$. Evaluate the following.
 - 1. $\sin(2\alpha)$
 - 2. $\tan\left(\frac{\beta}{2}\right)$
 - 3. $\cos(\alpha + \beta)$
- IV. Prove the following identities.

4 points each

1.
$$\frac{\sec\theta - \csc\theta}{\cot\theta - 1} = -\sec\theta$$

$$2. \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} - \frac{\tan \theta}{\sec^2 \theta} = 1$$

V. Let
$$f(x) = -2\cos\left(\frac{\pi x}{2} + \frac{\pi}{2}\right)$$
.

3 points each

- 1. Identify the domain, range, amplitude, period, phase shift, vertical shift of f.
- 2. Sketch the graph of at least one period of f.