UPSCHOOLOF STATISTICSSTUDENTCOUNCIL

PHTLOS SOPHTA

Mathematics 17
Fifth Long Examination

College Algebra and Trigonometry
First Semester, AY 2011-2012
I. Write TRUE if the statement is correct, and write FALSE otherwise.

1. The graph of $y=\tan ^{-1} x$ does not intersect the line $y=\frac{\pi}{2}$.
2. The equation $\sin x \cos x=1$ has a solution in \mathbb{R}.
3. If $y \in[0,1]$, then $0 \leq \operatorname{Arcsin} y \leq \frac{\pi}{2}$.
4. There exists a triangle whose interior angles are all less than 60°.
5. If $\omega \in \mathbb{C} \backslash\{1\}$ and ω is a cube root of one, then $1+\omega+\omega^{2}=0$.
II.
6. Evaluate: $\tan \left(\operatorname{Arccos}\left(-\frac{12}{13}\right)+\operatorname{Arcsin}\left(\frac{3}{5}\right)\right)$.
7. Given: $z_{1}=3$ cis $65^{\circ}, z_{2}=\sqrt{2}+\sqrt{2} i$ and $z_{3}=2 c i s 210^{\circ}$. Find:
(a) the imaginary part of $z_{2}+\overline{z_{3}}$.
(b) $\frac{\left(z_{1}\right)^{3} \cdot z_{2}}{z_{3}}$ (Express your answer in rectangular form.)

4 points
III.

1. Solve for all $x \in \mathbb{R}$ such that $\operatorname{Arccos}(1-2 x)+\operatorname{Arctan}(-1)=\operatorname{Arcsin}\left(\sin \frac{11 \pi}{12}\right)$. 4 points
2. Solve for all $x \in[0,2 \pi)$ such that $\cos 2 x-4 \cos x=2 \sin ^{2} x$.
3. Solve for all $x \in \mathbb{C}$ such that $z^{4}=8 \sqrt{2}(1-i)$. Leave your answer in polar form.
IV. Solve the following problems completely.

5 points each

1. Along a street in a shopping district, Nobita observed that the angle of elevation of a tower is 30°. Walking 40 m towards the tower and stopping at a noodle shop, Nobita finds that the new angle of elevation of the tower is 60°. Find the height of the tower and the distance of the noodle shop from the base of the tower.
2. Find the measures of the interior angles of a triangle with dimensions 6 by 10 by 14 . (To simplify your solution, first find the angle opposite the longest side.)
