

PHTLOS SOPHTA
M53_LE1_
Elementary Analysis I
Mathematics 53
First Long Examination
I. TRUE or FALSE. Write True if the statement is correct. Otherwise, write False. (1 point each)

1. If the functions f and g are both discontinuous at $x=\mathrm{a}$, then $f+g$ is discontinuous at the same point.
2. Given $h(x)=\llbracket x \rrbracket$, the limit of the function h from the left is not equal to the limit from the right for any $\mathrm{a} \in \mathbb{R}$ because it contains infinitely jump discontinuities.
3. The limit of the function $p(x)=\frac{1}{x^{2}}$ exists.
4. Polynomial functions and Rational functions are continuous everywhere.
5. The Intermediate Value Theorem states that if f is continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ with $f(a) \neq f(b)$. For every k between $f(a)$ and $f(b)$, there exists c in $[\mathrm{a}, \mathrm{b}]$ such that $f(c)=k$.
II. EVALUATE. Evaluate the following limits. (2 points each)
6. $\lim _{x \rightarrow 1}\left[\frac{4 x^{4}-5 x^{3}+4}{(7 x-6)^{10}} \cdot \frac{\left(\frac{1}{x^{3}}\right)^{7}}{9 x^{5}-7 x^{4}-6 x+7}\right]$
7. $\lim _{m \rightarrow+\infty} \sqrt{m^{2}+3 m}-m$
8. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt[3]{x-3}+1}$
9. $\lim _{x \rightarrow 2^{-}} \frac{x+\llbracket-x \rrbracket}{x^{2}-1-\llbracket 3 x-2 \rrbracket}$
10. $\lim _{x \rightarrow-1^{-}}\left(\frac{\llbracket x+1 \rrbracket}{x+1}+\frac{x^{3}+2 x^{2}-5 x+1}{x^{3}+2}\right)$
11. $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-\operatorname{sgn}\left(x^{2}-2 x\right)}{\llbracket x-2 \rrbracket \cdot|x+2|}$
12. $\lim _{y \rightarrow-\infty}\left(\sqrt{9 y^{2}+4}-\sqrt{9 y^{2}-2 y}\right)$
13. $\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(1-\frac{1}{\sqrt{2 t+1}}\right)$
14. $\lim _{x \rightarrow 1} \frac{\sin (\sin (x))}{x}$
15. $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+1+5 \cos x}{3 x^{3}}$
III. Do as indicated. (2 points each)
16. Sketch the graph of the function satisfying the following conditions: $\operatorname{dom} f:[-4,4], f(-4)=f(-2)=3, f(0)=1$, $f(2)=-1, f(4)=0, \lim _{x \rightarrow-4^{+}} f(x)=0, \lim _{x \rightarrow-4} f(x)=1, \lim _{x \rightarrow 0^{-}} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x)=4, \lim _{x \rightarrow 2} f(x)=-1$ and $\lim _{x \rightarrow 4^{-}} f(x)=0$.
17. Show that $g(x)=x^{3}-3 x+1$ has a zero between 0 and 2 .
18. State the Squeeze Theorem.
19.

Given $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } x \leq-2 & \\ a x+b & \text { if }-2<x<2 . & \text { Find the value of } a \text { and } b \text { such that } \\ 2 x-6 & \text { if } x \geq 2 & \lim _{x \rightarrow-2} f(x) \text { and } \lim _{x \rightarrow 2} f(x) \text { exists. }\end{array}\right.$
5. Find the value of $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)$.
IV. Discuss the continuity of the function.

Sketch the graph. (5 points)

$$
F(x)= \begin{cases}|x+3| & , x \leq 0 \\ \llbracket 2 x \rrbracket & , 0<x<1 \\ \frac{x^{2}-5 x}{x-5} & , x \geq 1\end{cases}
$$

