UPSCHOOLOF STATISTICSSTUDENTCOUNCIL

PHTLOS SOPHTA
M53_LE5_001

Mathematics 53
Fifth Long Examination

Elementary Analysis I
First Semester, AY 2012-2013
I. Find dy/dx. There is no need to simplify.

1. $y=\frac{\left[\cot ^{-1}\left(5^{x}\right)\right]^{2}}{1-\cosh (\sqrt{x})}$
(4 points)
2. $y=\frac{\sqrt[4]{x^{2}+1} \cot ^{3}(2 x)}{\sinh ^{-1}(x)} \quad$ (Use logarithmic differentiation.)
(5 points)
3. $y=\left[\sec \frac{1}{x}\right]^{\sec ^{-1}\left(e^{4 x}\right)}$
(5 points)
II. Evaluate the following limits.
(4 points each)
4. $\lim _{x \rightarrow 1} \frac{(\log x)^{2}}{x^{3}-3 x+2}$
5. $\lim _{x \rightarrow \infty}\left(1+\pi e^{-x}\right)^{e^{x}}$
III. Perform the integration.
6. $\int \frac{2^{\sin x} \sin x+3^{-\sin x} \sec x}{3^{-\sin x} \tan x} d x$
(5 points)
7. $\int_{0}^{\ln 2} \tanh ^{2} x d x$
(4 points)
8. $\int \frac{x^{3}+x}{16 x^{4}-1} d x$
(5 points)
IV. At any point (x, y) on the curve, the tangent line has slope equal to $\frac{3}{\sqrt{4 x-x^{2}}}$. If the point $(1,0)$ lies on the curve, determine its equation.
(4 points)

Formulas:
$1-\tanh ^{2} x=\operatorname{sech}^{2} x$
$1-\operatorname{coth}^{2} x=-\operatorname{csch}^{2} x$
$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$ $\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$ $\sinh 2 x=2 \sinh x \cosh x$ $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=1+2 \sinh ^{2} x=2 \cosh ^{2} x-1$
$\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
$\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
$\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
$\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)$
$\operatorname{sech}^{-1} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$
$\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1-x^{2}}}{|x|}\right)$
END OF EXAM

$$
\begin{gathered}
\text { AM } D_{\mathrm{r}}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}+1}} \\
D_{\mathrm{r}}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}} \\
D_{\mathrm{r}}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}},|x|<1 \\
D_{\mathrm{r}}\left(\operatorname{coth}^{-1} x\right)=\frac{1}{1-x^{2}},|x|>1 \\
D_{\mathrm{r}}\left(\operatorname{sech}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}} \\
D_{\mathrm{r}}\left(\operatorname{csch}^{-1} x\right)=-\frac{1}{|x| \sqrt{x^{2}-1}} \\
\int \frac{1}{\sqrt{u^{2}+a^{2}}} d u=\sinh ^{-1}\left(\frac{u}{a}\right)+C=\ln \left(u+\sqrt{u^{2}+a^{2}}\right)+C \\
\int \frac{1}{\sqrt{u^{2}-a^{2}}} d u=\cosh ^{-1}\left(\frac{u}{a}\right)+C=\ln \left(u+\sqrt{u^{2}-a^{2}}\right)+C, u>a \\
\int \frac{1}{a^{2}-u^{2}} d u=\left\{\begin{array}{l}
\frac{1}{a} \tanh ^{-1}\left(\frac{u}{a}\right)+C, \mid u<a \\
\frac{1}{a} \operatorname{coth}^{-1}\left(\frac{u}{a}\right)+C,|u|>a
\end{array}=\frac{1}{2 a} \ln \left|\frac{a+u}{a-u}\right|+C\right.
\end{gathered}
$$

END OF EXAM

