

UP SCHOOL OF STATISTICS STUDENT COUNCIL

Education and Research

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @erhomyhero

Mathematics 54 **Final Examination**

- I. Write TRUE if the statement is always true. Otherwise, write FALSE.
 - 1. The vectors <1,-1> and <-1,1> are parallel.
 - 2. The polar curve $r = \sin 4\theta$ is a 4-petalled rose.
 - 3. The equation $z^2 = x^2 + y^2 + 1$ represents a hyperboloid of two sheets.
 - 4. The eccentricity of any hyperbola is greater than the eccentricity of any ellipse.
 - 5. The curve with parametric equations $x = t^2 + 1$, $y = t^2$ is a parabola.
 - 6. Let $r = f(\theta)$ be a polar curve where f is differentiable. The slope of the tangent line to the point where $\theta = 0$ is f'(0).
- II. Perform the following integration .

1.
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$
 2. $\int_0^\infty x e^{-x} dx$

- III. Find the area under the graph of $y = \sin^2 x$ from x = 0 to $x = \pi$.
- IV. Set-up a definite integral equal to the area outside the limaçon $r = 4 3\sin\theta$ but inside the circle $r = 5\sin\theta$. 4 points
- V. Let ℓ be the line with parametric equations x = 3 + 2t, y = -1 + 2t, z = 2 t and let Π be the plane 2x - y + 2z = 5
 - 1. Show that the line is parallel to the plane. 3 points
 - 2. Find the distance of the line from the plane. 3 points

VI. Let \vec{R} (t) be a vector-valued function such that $\vec{R}(0) = \langle 1, -1, 3 \rangle$, $\vec{R}'(0) = \langle 1, 2, -2 \rangle$, $\vec{R}''(0) = \langle 2, 0, 1 \rangle$

- 1. Find the tangent line to the graph of $\vec{R}(t)$ at t = 0. 3 points
- 2. Find the curvature at t = 0.
- VII. A bee has velocity function $\vec{V}(t) = \langle -3\sin t, 4, 3\cos t \rangle$.
 - 1. Find the acceleration of the bee at time $t = \pi$.
 - 2. Find the position function given that the bee is located at the point (0,1,3) at time t = 0. 3 points
 - 3. Find the distance travelled by the bee from t = 0 to t = 2.

VIII. Let $f(x, y) = 9x^2 - y^2$.

- 1. Identify the surface z = f(x, y). 1 point
- 2. Sketch the level curve of f(x, y) of height 36. 4 points
- 3. Find an equation of the tangent plane to z = f(x, y) at the point (1,-1,8). 3 points
- 4. If, in addition, $x = uve^{u}$ and $y = u^{2}v + u \ln v$, use the chain rule to find $\frac{\partial f}{\partial u}$. 4 points
- IX. A rectangular field measures 300 m by 400 m. If a path of uniform 1 m width is constructed around it, use differentials to estimate the area covered by the path. 4 points

Elementary Analysis II

First Semester, AY 2013 -2014

M54-FE-001

1 point each

5 points each

4 points

1 point

3 points

4 points