UP SCHOOL OF STATISTICS STUDENT COUNCIL
 Education and Research

@erhomyhero

M54-FE-001

Mathematics 54
Final Examination

Elementary Analysis II First Semester, AY 2013-2014
I. Write TRUE if the statement is always true. Otherwise, write FALSE.

1 point each

1. The vectors $\langle 1,-1\rangle$ and $\langle-1,1\rangle$ are parallel.
2. The polar curve $r=\sin 4 \theta$ is a 4-petalled rose.
3. The equation $z^{2}=x^{2}+y^{2}+1$ represents a hyperboloid of two sheets.
4. The eccentricity of any hyperbola is greater than the eccentricity of any ellipse.
5. The curve with parametric equations $x=t^{2}+1, y=t^{2}$ is a parabola.
6. Let $r=f(\theta)$ be a polar curve where f is differentiable. The slope of the tangent line to the point where $\theta=0$ is $f^{\prime}(0)$.
II. Perform the following integration .

5 points each

1. $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$
2. $\int_{0}^{\infty} x e^{-x} d x$
III. Find the area under the graph of $y=\sin ^{2} x$ from $x=0$ to $x=\pi$.

4 points
IV. Set-up a definite integral equal to the area outside the limaçon $r=4-3 \sin \theta$ but inside the circle $r=5 \sin \theta$. 4 points
V. Let ℓ be the line with parametric equations $x=3+2 t, y=-1+2 t, z=2-t$ and let Π be the plane $2 x-y+2 z=5$.

1. Show that the line is parallel to the plane. 3 points
2. Find the distance of the line from the plane.

3 points
VI. Let $\vec{R}(t)$ be a vector-valued function such that $\vec{R}(0)=\langle 1,-1,3\rangle, \vec{R}^{\prime}(0)=\langle 1,2,-2\rangle, \vec{R}^{\prime \prime}(0)=\langle 2,0,1\rangle$

1. Find the tangent line to the graph of $\vec{R}(t)$ at $t=0$.

3 points
2. Find the curvature at $t=0$.

4 points
VII. A bee has velocity function $\vec{V}(t)=\langle-3 \sin t, 4,3 \cos t\rangle$.

1. Find the acceleration of the bee at time $t=\pi$. 1 point
2. Find the position function given that the bee is located at the point $(0,1,3)$ at time $t=0$. 3 points
3. Find the distance travelled by the bee from $t=0$ to $t=2$. 3 points
VIII. Let $f(x, y)=9 x^{2}-y^{2}$.
4. Identify the surface $z=f(x, y)$.

1 point
2. Sketch the level curve of $f(x, y)$ of height 36 .
3. Find an equation of the tangent plane to $z=f(x, y)$ at the point $(1,-1,8)$.
4. If, in addition, $x=u v e^{u}$ and $y=u^{2} v+u \ln v$, use the chain rule to find $\frac{\partial f}{\partial u}$. 4 points
IX. A rectangular field measures 300 m by 400 m . If a path of uniform 1 m width is constructed around it, use differentials to estimate the area covered by the path.

4 points

