Mathematics 54
Third Long Exam
I. True or False. Write TRUE if the statement is always true, otherwise, write FALSE. 1 point each

1. The graph of the equation $3 x^{2}-4 y^{2}+z^{2}+4=0$ is a hyperboloid of two sheets.
2. The graph of the surface $x^{2}-z=y^{2}$ is an elliptic paraboloid.
3. The vector $5 \vec{A}$ has magnitude 5 and the same direction as \vec{A}.
4. If $\vec{v} \times \vec{u}=\overrightarrow{0}$, then $\vec{v}=\overrightarrow{0}$ or $\vec{u}=\overrightarrow{0}$.
II. Problem Solving. Do as indicated. Show complete and clear solutions to get full points. 9 points each
5. Let $A(1,-1,0), B(2,0,1), C(5,-1,2), D(-1,0,0)$.
(a) Find the equation of the sphere whose endpoints of a diameter are A and C .
(b) Find the symmetric equations of the line containing C and D .
(c) Find the volume of the parallelepiped having the edges DA, DB and DC.
6. Given the surface: $4-z=4 x^{2}+4 y^{2}$.
(a) Identify its traces at the coordinate planes.
(b) Identify its type as a quadric surface and sketch its graph.
(c) Find an equation of the curve in the $x z$-plane that if revolved about the x-axis will form to the given surface.
7. Given the lines: $\ell_{1}:\left\{\begin{array}{l}x=2 t-1 \\ y=t+2 \\ z=3-t\end{array}\right.$ and $\ell_{2}: \frac{1-x}{3}=y-3=\frac{z-2}{2}$.
(a) Find the intersection of ℓ_{1} and ℓ_{2}.
(b) Find the equation of the plane π containing both lines.
(c) Find the distance of ℓ_{1} to the point $(0,1,2)$.
8. Given the planes: $\pi_{1}: 3 x-y+z=1$ and $\pi_{2}: x+4 y-2 z=0$.
(a) Find the line of intersection of π_{1} and π_{2}.
(b) Find the angle between the two given planes.

Find the distance of π_{1} to the point $(-1,-2,3)$.

