Mathematics 54
Fourth Long Exam

1. Let $\vec{R}(t)=\left\langle e^{2 t}, 2-3 t^{2}, t \ln t\right\rangle$. Evaluate the following.

4 points each
(a) $\lim _{t \rightarrow 0^{+}} \vec{R}(t)$
(b) $\int_{1}^{2} \vec{R}(t) d t$
2. Let $\vec{R}(t)=\left\langle 1-t, 1+t^{2}, t-t^{2}\right\rangle$.
$\begin{array}{ll}\text { (a) Find the moving trihedral of } \vec{R} \text { at } t=1 \text {. } & 8 \text { points } \\ \text { (b) Find the }\end{array}$
(b) Find the equation of the normal plane at $t=0$.

4 points
3. Let $\vec{R}(t)=\sqrt{2} t \hat{i}+e^{t} \hat{j}-e^{-t} \hat{k}$.
(a) Reparametrize $\vec{R}(t)$ with respect to the arc length measured from $t=0$ in the direction of increasing t. (Hint: $2 \cosh =\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}$) 4 points
(b) Find the curvature of $\vec{R}(t)$ at $t=0$.

3 points
4. A bug moving in space has a velocity given by $\vec{v}(t)=\left\langle-e^{2-t}, 2 t+1,1\right\rangle$. At $t=2$, it was found to be at $(1,7,1)$.
(a) Find the position function of the bug at any time t. 3 points
(b) Find the normal component of acceleration of the bug at $t=2$.

4 points
5. A cannon 20 meters above the ground with its barrel at angle 30° with the horizontal fires a ball with a muzzle speed of 30 meters per second. If acceleration due to gravity is rounded off to $10 \mathrm{~m} / \mathrm{s}^{2}$, find:
(a) the position function at any time t

1 point
(b) the maximum height of the cannon ball
(c) the speed at the instant the cannon ball hits the ground
(d) the farthest distance the cannon ball can reach

