UP SCHOOL OF STATISTICS STUDENT COUNCIL

Education and Research

Mathematics 54 Fifth Long Exam

M54-LE5-003 Elementary Analysis II First Semester, AY 2014 -2015

1. Given

$$f(x,y) = \begin{cases} \frac{x \sin^{-1}(y+1)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

a. Identify and sketch the domain of f.

(3 pts)

b. Show that f has an essential discontinuity at (0,0).

(4 pts)

2. Given

$$g(x,y) = \begin{cases} \frac{x^2 - y^2}{x - y} & \text{if } x \neq y; \\ 2x & \text{if } x = y. \end{cases}$$

Using the <u>limit definition</u> of $g_x(x,y)$, find $g_x(3,3)$

(3 pts)

(3 pts)

3. Let ρ be a continuous function of a single variable and h a differentiable function of x and y such that

$$h_x(x,y) = \frac{1}{y}\rho\left(\frac{x}{y}\right)$$
 and $\frac{-x}{y^2}\rho\left(\frac{x}{y}\right) = h_y(x,y)$

with $\rho(2) = 4$, $\rho'(2) = 2$, and h(2, 1) = -5.

a. Find $h_{xy}(2,1)$.

b. Use the local linear approximation of h at (2,1) to estimate the value of

c. If $x = 6v - u^2$ and $y = \sqrt[3]{u - v}$ find $\frac{\partial h}{\partial u}$ when u = 4 and v = 3. (4 pts)

4. The equation

$$xyz = F(x, y, z)$$

defines z implicitly as a differentiable function of the independent variables x and y. If $F_x(x,y,z) = 0$ and $F_y(x,y,z) = 0$ for all (x,y,z), show that $x\frac{\partial z}{\partial x} = y\frac{\partial z}{\partial u}.$ (4 pts)

- 5. Write TRUE if the statement is true, FALSE if it is false, and justify your answer in no more than two sentences. (2 pts each)
 - a. There is a function f of x and y whose partial derivatives are $f_x(x,y) =$ x - 2y and $f_y(x, y) = 2x + 2y$.
 - b. $\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{x^2 + y^2} = \lim_{x\to 0} x = 0$
 - c. The curve of intersection of $z = x \cos(y)$ and $y = \pi$ has a horizontal tangent line (i.e., parallel to the xy-plane) at the point $(1, \pi, -1)$.