Mathematics 55
First Long Exam

Elementary Analysis III
Second Semester, AY 2014-2015

1. Let $f(x, y)=y^{2} e^{2 x}+\cos (x y)$ and $P_{0}=(0,2)$.

6 points
(a) Find the directional derivative of f at the point P_{0} in the direction of $\vec{v}=\langle 1,-1\rangle$.
(b) Find the maximum rate of change of f at P_{0}.
(c) Find a unit vector in the direction in which f decreases most rapidly at P_{0}.
2. Determine the equations of the normal line to the surface S at the point $(0,0,1)$ if S is described by the Cartesian equation $\ln (2 y+z)=x z^{2}$.

4 points
3. Let S be the parametric surface defined by $\vec{R}(u, v)=u v^{2} \hat{i}+(u-v) \hat{j}+u^{2} \hat{k}$.

4 points
(a) Compute $\vec{R}_{u} \times \vec{R}_{v}$.
(b) Find an equation of the tangent plane to S at the point $(1,2,1)$.
4. Find and classify all critical points (x, y) of the function $f(x, y)=x^{3}+5 y^{3}-3 x^{2} y-3 y+1$.

6 points
5. Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y, z)=10 x-8 y+6 z$ subject to the constraint $x^{2}+y^{2}+z^{2}=50$.
6. Evaluate $\int_{0}^{6 \sqrt{\pi}} \int_{y / 6}^{\sqrt{\pi}} \sin \left(x^{2}\right) d x d y$.

4 points
7. Evaluate $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.

4 points
8. Set up an iterated double integral that yields the (surface) area of the portion of the plane $2 x+2 y+z=4$ in the first octant enclosed by the $y z$-plane and the cylinder $y=x^{2}$.

4 points
9. Set up an iterated double integral in polar coordinates that gives the mass of a lamina in the shape of the region in the first quadrant inside the circle $x^{2}+y^{2}=9$ but outside the circle $x^{2}+(y-1)^{2}=1$ having density $\delta(x, y)=x^{3} y$.

