UP SCHOOL OF STATISTICS STUDENT COUNCIL
 Education and Research

erho.weebly.com \square erhomyhero@gmail.com
/erhoismyhero
@erhomyhero
EDUCATION AND RESEARCH
M55-LE2-002

Mathematics 55
Second Long Exam

1. Use rectangular coordinates to evaluate the triple integral $\iiint_{G} y d V$, where G is the solid bounded by $2 x+3 y+2 z=6$ and the coordinate planes.
2. Use cylindrical coordinates to find the volume of the solid in the first octant bounded by the planes y $=2 z, x=0, z=0$ and the cylinder $x^{2}+y^{2}=4$.
3. Use spherical coordinates to set up the iterated integral equal to the mass of the solid bounded above by the sphere $x^{2}+y^{2}+(z-2)^{2}=4$ and bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ if the density at any point (x, y, z) on the solid is $x+1$.
4. Let $F(x, y, z)=2 y e^{2 x} \hat{i}+e^{2 x} \hat{j}+3 z^{2} \hat{k}$. Show that F is conservative and use a potential function for F to find the value of the line integral $\int_{C} F d R$ where C is any sectionally smooth curve from the point $(\ln 2,1,1)$ to the point $(\ln 2,2,2)$.
5. Evaluate the line integral $\int_{C}\left(x^{2}+x y\right) d x+\left(y^{2}-x y\right) d y$ where C consists of the line segment $y=$ x from the point $(0,0)$ to the point $(2,0)$ and the vertical line from $(2,2)$ to $(2,0)$.
6. Use Green's Theorem to evaluate the line integral $\oint_{C} y^{2} d x+x^{2} d y$ where C is the closed curve determined by the x-axis, the line $x=1$ and the curve $y=x^{2}$ traversed in counter-clockwise direction.
7. Let the surface S be given by: $\vec{r}(u, v)=u \cos v \hat{i}+u \sin v \hat{j}+(v+3) \hat{k}, 0 \leq u \leq 1,0 \leq v \leq \pi$
(a) Find $\vec{r}_{u} \times \vec{r}_{v}$.
(b) Evaluate the surface integral $\iint_{S} \sqrt{x^{2}+y^{2}} d \sigma$.
8. Let $F(x, y, z)=-x \hat{i}+(y+2) \hat{j}+z \hat{k}$ be the velocity field of a fluid and let S be the portion of the plane $3 x+2 y+z=6$ in the first octant. Find the flux of F across S.
