

1. Determine whether the given sequence or series is convergent or divergent.

2.

7 points

15 points

- (a) Express $\frac{1}{1-2x}$ as a power series about x = 0 and state the largest domain *D* for which this is valid.
- (b) By integrating the series obtained in (a), show that $\ln(1-2x) = -\sum_{n=0}^{\infty} \frac{2^{n+1}x^{n+1}}{n+1} \forall x \in D$. (c) Hence, by substituting an appropriate value of x, deduce the value of $\sum_{n=0}^{\infty} \frac{1}{(n+1)2^{n+1}}$.

3. Let
$$f(x) = \sum_{n=1}^{\infty} \frac{(x-2)^n}{7^n \sqrt[3]{n}}$$

(a) Find the interval of convergence of f .

- (b) Express f'(0) as a series.
- 4. Find the third degree Taylor polynomial of $f(x) = \ln x$ about x = 1. 4 *points*
- 5. For all real number x, it is well known that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ 7 points (a) Obtain a power series for $f(x) = e^{-x^2}$.
 - (a) Obtain a power series for $f(x) = e^{-x}$.
 - (b) Using the coefficient of x^4 in the series found in (a), deduce the value of $f^{(4)}(0)$.
 - (c) Use the first four nonzero terms of the series obtained from (a) to approximate $\int_0^1 e^{-x^2} dx$.