@erhomyhero

Mathematics 55
Third Long Exam

1. Determine whether the given sequence or series is convergent or divergent.
(a) $\left\{\ln \left(\frac{n}{2 n+1}\right)\right\} \begin{gathered}\infty \\ n=1\end{gathered}$
(d) $\sum_{n=1}^{\infty} \frac{4 n-1}{n^{3}+2 n^{2}}$
(b) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{2 n+1}\right)$
(e) $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}}{n+5^{n}}$
(c) $\sum_{n=1}^{\infty} 2 n e^{-n^{2}}$
2.

7 points
(a) Express $\frac{1}{1-2 x}$ as a power series about $x=0$ and state the largest domain D for which this is valid.
(b) By integrating the series obtained in (a), show that $\ln (1-2 x)=-\sum_{n=0}^{\infty} \frac{2^{n+1} x^{n+1}}{n+1} \forall x \in D$.
(c) Hence, by substituting an appropriate value of x, deduce the value of $\sum_{n=0}^{\infty} \frac{1}{(n+1) 2^{n+1}}$.
3. Let $f(x)=\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{7^{n} \sqrt[3]{n}}$

7 points
(a) Find the interval of convergence of f.
(b) Express $f^{\iota}(0)$ as a series.
4. Find the third degree Taylor polynomial of $f(x)=\ln x$ about $x=1$.

4 points
5. For all real number x, it is well known that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(a) Obtain a power series for $f(x)=e^{-x^{2}}$.
(b) Using the coefficient of x^{4} in the series found in (a), deduce the value of $f^{(4)}(0)$.
(c) Use the first four nonzero terms of the series obtained from (a) to approximate $\int_{0}^{1} e^{-x^{2}} d x$.

