

UP SCHOOL OF STATISTICS STUDENT COUNCIL

Education and Research

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @@erhomyhero

Statistics 117 **Final Long Examination**

S117_FIN_001 Mathematics for Statistics **TGC**apistrano

I. FILL IN THE BLANKS

- 1. The minimal sigma-field containing \mathcal{C} denoted by σ (\mathcal{C}), is defined as a collection of subsets of Ω that satisfies the following:
 - a) _____
 - b) _____
 - c)
- 2. The field, denoted by \mathcal{F}_{1} is defined as a collection of subsets of Ω that satisfies the following:
 - a)
 - b) If _____ then _____
 - c) If _____ then _____
- 3. The class $\{A_1, A_2, ..., A_n\}$ where $A_1 \subset \mathscr{A}(i=1,2,...,n)$ is defined to be a partition of A if and only if it satisfies the following:
 - a) _____ b) _____

4. The limit of a monotone nondecreasing sequence of sets $\{A_n\}$ is _____.

- 5. The limit of a monotone nonincreasing sequence of sets $\{A_n\}$ is ______.
- 6. The steps in proving the statement P(n) is true for all positive integers n by mathematical induction are:
 - a) Step 1: _____
 - b) Step 2: _____ c) Step 3: _____
 - Step 4: Conclude that P(n) is true for all positive integer n
- 7. In proving the statement $p \rightarrow q$
 - a) By direct method, we assume that ______ is/are true
 - b) By contrapositive, we assume that ______ is/are true
 - c) By contradiction, we assume that ______ is/are true
- 8. In disproving $p \rightarrow q$, we need to show a counterexample for which ______ is true
- 9. In proving $A \subset B$, we need to show that $\omega \in A$ implies _____
- 10. In proving that the sets A, B and C are pairwise disjoint, we need to show
 - a) _____
 - b) _____
 - c)

UP SCHOOL OF STATISTICS STUDENT COUNCIL Education and Research

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @erhomyhero

- 11. Suppose an urn contains M balls of which K are defective and (M-K) are nondefective
 - a) The number of ordered samples with replacement of size n containing r defectives and (n-r) nondefectives
 - b) The number of ordered samples without replacement of size n containing r defectives and (n-r) nondefectives
 - The number of unordered samples without replacement of size n containing r defectives and (n-r) c) nondefectives

12. a)
$$\sum_{x=0}^{n} {n \choose x} a^{x-1} =$$

b) $\sum_{x=0}^{\infty} \frac{a^{0}}{x!} =$ _____
c) $\sum_{x=0}^{\infty} {n+x-1 \choose x} a^{x} =$ _____ when $-1 < a < 1$
d) $\sum_{x=1}^{n} 3x =$ _____

e)
$$\sum_{x=100}^{150} y =$$

f) $\sum_{x=1}^{\infty} \frac{5}{x(x+1)} =$ _____

g)
$$\sum_{r=1}^{n} ar^{1} = \underline{\qquad}$$
 when $r \neq 1$

13. Let Ω = set of real numbers. Let $f(x) = (2x)|_{[-1,1]} (x) + (x-3)|_{[0,\infty]} (x)$.

- a) f(1) =_____
- b) f(-3) =
- 14. The number of ways of forming 5 committees with 3 members each is
- 15. The number of distinct permutations of the word 'character' is
- 16. The number of distinct outcomes when we toss a die 10 times is ______.
- 17. The number of 5-digit numbers that can be formed using the integers 0 to 9 is
- 18. An urn contains 10 balls marked from 1-10. Two balls will be selected using random sampling with replacement.

Let $\Omega = \{(\omega_1, \omega_2) : \omega \in \{1, 2, ..., 10\} i = 1, 2\}$

 A_{ij} = the set containing outcomes where ball #i is selected on the jth draw, i=1,2,...,10 and j=1,2.

- a) The elements of the set A_{11} are _____.
- b) The elements of the set $A_{11^c} \cap A_{12}$ are _____.
- c) The set containing outcomes where ball #1 is not selected in any of the 2 draws can be represented using the A_{ij} 's as _____.

UP SCHOOL OF STATISTICS STUDENT COUNCIL Education and Research

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @erhomyhero

- II. TRUE OR FALSE. Write 'True' if the answer is always true; otherwise, write 'False'.
 - 1. The set of real numbers is equivalent to the set of counting numbers.
 - 2. The set of positive integers is equivalent to the set of all integers.
 - 3. The set of rational numbers is a non-denumerable set.
 - 4. The set of all outcomes of tossing a die 1,000,000 times is a finite set.
 - 5. $f(x) = x^2 1$ is a one-to-one but onto function from the set of positive real numbers into the set of all real numbers.
 - 6. f(x) = |x-1| is a onto but not one-to-one function from the set of nonnegative integers into the set of all nonnegative integers.
 - 7. $f(x) = \log(x)$ is a one-to-one but onto function from the set of positive real numbers into the set of all real numbers.
 - 8. Any subset of the set of all real numbers is a Borel set.
 - 9. The Borel field is the minimal σ -field containing the class $\mathcal{C} = \{(x,y): where x \text{ and } y \text{ are real} \}$ numbers and x < y).
 - 10. A field is closed under finite intersection.
 - 11. A field is closed under countable intersection.
 - 12. The Borel field is closed under finite union.
 - 13. The Borel field is closed under countable intersection.
 - 14. A field is a sigma-field.
 - 15. To disprove the statement " $\forall x, P(x)$ " is true, it is enough to provide an example for which the proposition P(x) is false for some x in the domain of discourse.
 - 16. To prove the statement " $\exists x, P(x)$ " is true, it is enough to provide an example for which the proposition P(x) is true for some x in the domain of discourse.
 - 17. The proposition $p \lor \sim p$ is a tautology.
 - 18. The proposition $p \lor p$ is a tautology.
 - 19. The propositions $P \equiv (p \equiv q)$ and $Q \equiv (p \land q) \lor (\neg p \land \neg q)$ are logically equivalent to each other.
 - 20. The propositions $P \equiv ((p \lor q) \land r)$ and $Q \equiv (p \lor q)$ are logically equivalent to each other.
 - 21. $(p \lor q) \land r) \rightarrow (p \lor q)$
 - 22. $\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$
 - 23. (x=0 and y=0) is a sufficient condition for xy=0.
 - 24. (x=0 and y=0) is a necessary condition for xy=0.
 - 25. If $xy \neq 0$ then $(x \neq 0 \text{ and } y \neq 0)$.
 - 26. If $xy \neq 0$ then $(x \neq 0 \text{ or } y \neq 0)$.
 - 27. A function f: $A \rightarrow B$ is called onto iff its range is equal to its codomain.
 - 28. If $A \cap B \cap C = \emptyset$ then the class {A, B and C} is pairwise disjoint.
 - 29. If the class {A,B,C,} is a pairwise disjoint then $A \cap B \cap C = \emptyset$.
 - 30. For any sets A, B and C, $n(A \bigcup B \bigcup C) = n(A) + n(B) + n(C)$.
 - 31. If $B \subset A$ then $n(A \cap B^c) = n(A) n(B)$.
 - 32. If $B \subset A$ then $A^c \subset B^c$.
 - 33. If $(A \cap B) \cup C = C$ then $A \cap B \subset C$.
 - 34. A class that is closed under finite union will also be closed under countable union.
 - 35. A class that is closed under countable union will also be closed under finite union.

UP SCHOOL OF STATISTICS STUDENT COUNCIL Education and Research

EDUCATION AND RESEARCH

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @erhomyhero

- 36. If $\omega \in \bigcup_{\lambda = \Delta} A_{\lambda}$ then $\omega \in \bigcap_{\lambda = \Delta} A_{\lambda}$.
- 37. $(A-B)^{c} = A^{c} B^{c}$.
- 38. The cardinal of the set of positive integers is the same as the cardinal of the set of positive real numbers.
- 39. The nth term of geometric progression is $a_n = a_1 r^n$ where a_1 is the 1st term of the sequence and r is the common ratio.
- 40. I think I will get a high grade in this exam.