Entropy and Research Werho.weebly.com erhomyhero@gmail.com f/erhoismyhero @@erhomyhero	
I. FILL IN THE BLANKS	
1. The minimal sigma-field containing	ng C ₁ denoted by σ (C), is defined as a collection of subsets of Ω
that satisfies the following:	
a)	
b)	
c)	
2. The field, denoted by F, is define	ed as a collection of subsets of Ω that satisfies the following:
a)	
b) If	, then
c) If	, then
3. The class $\{A_1, A_2, \dots, A_n\}$ where	e $A_i \subset A$ (i=1,2,n) is defined to be a partition of set A if and only if
it satisfies the following:	
a)	
b)	
4. The limit of a monotone nondecr	easing sequence of sets {A _n } is
5. The limit of a monotone nonincre	easing sequence of sets {A _n } is
6. The steps in proving that stateme	ent P(n) is true $\forall \mathbb{Z}^+ n$ by mathematical induction are:
a) Step 1:	
b) Step 2:	
c) Step 3:	
d) Step 4: Conclude that P(n)) is true for all positive integer n.
7. In proving the statement $p \rightarrow q$,	
a) By direct method, we assu	ime that is/are true.
b) By contradiction, we assu	me that is/are true.
c) By contrapositive, we assu	ume that is/are true.
8. In disproving $p \rightarrow q$, we need to sl	how a counterexample for which is/are true.
9. In proving $A \subset B$, we need to sh	Now that $\omega \in A$ implies
10. In proving that A, B and C are p	pairwise disjoint, we need to show:
a)	
b)	
c)	
11. Suppose an urn contains M ball	s for which K are defective and M-K are non-defective.
a) The number of ordered sat	mples with replacement of size n containing r defectives and n-r
non-defectives is	
b) The number of ordered sa	mples without replacement of size n containing r defectives and n-r
non-defectives is	· ·
c) The number of unordered	samples without replacement of size n containing r defectives and n-
,	

- 4. The set of all outcomes of tossing a coin 1,000,000 times is a finite set.
- 5. $F(x) = x^2 1$ is one-to-one but not an onto function from the set of positive real numbers to the set of all real numbers.
- 6. G(x) = |x 1| is onto but not one-to-one function from the set of nonnegative integers to the set of nonnegative integers.
- 7. If A is a field, then A is a sigma-field.
- 8. A subset of the set of all real numbers is a Borel set.
- 9. The Borel field is a minimal field.
- 10. A field is closed under finite intersection.
- 11. A field is closed under countable intersection.
- 12. The Borel field is closed under finite union.
- 13. The Borel field is closed under countable intersection.
- 14. A B and B A are pairwise disjoint.

UP SCHOOL OF STATISTICS STUDENT COUNCIL Education and Research

Werho.weebly.com erhomyhero@gmail.com /erhoismyhero @erhomyhero

- 15. To disprove the statement $\forall x, P(x)$ is true, it is enough to provide an example for which the proposition P(x) is false for some x in the domain of discourse.
- 16. To prove the statement $\exists x, P(x)$ is true, it is enough to provide an example for which the proposition P(x) is true for some x in the domain of discourse.
- 17. The proposition $p v \sim p$ is a tautology.
- 18. The proposition p v p is a tautology.
- 19. The propositions $P \equiv (p \equiv q)$ and $Q \equiv (p \land q) \lor (\sim p \land \sim q)$ are logically equivalent to each other.
- 20. The propositions $P \equiv ((p \lor q) \land r)$ and $Q \equiv (p \lor q)$ are logically equivalent to each other.
- 21. $((p \lor q) \land r) \rightarrow (p \lor q)$
- 22. ~ $(p \rightarrow q) \leftrightarrow (p \wedge \sim q)$
- 23. (x=0 and y=0) is a sufficient condition for xy = 0.
- 24. (x=0 and y=0) is a necessary condition for xy = 0.
- 25. If $xy \neq 0$, then x = 0 and y = 0.
- 26. If $xy \neq 0$, then x = 0 or y = 0.
- 27. If $A \cap B \cap C = \emptyset$, then the class {A,B and C} is pairwise disjoint.
- 28. If the class {A,B,C} is pairwise disjoint, then $A \cap B \cap C = \emptyset$.
- 29. For any sets X, Y and Z, $n(X \cup Y \cup Z) = n(X) + n(Y) + n(Z)$.
- 30. If $B \subset A$, then n(A B) = n(A) n(B).
- 31. If $B \subset A$, then $A^C \subset B^C$.
- 32. If $(A \cap B) \cup C = C$, then $A \cap B \subset C$.
- 33. A class that is closed under finite union will also be closed under countable union.
- 34. A class that is closed under countable union will also be closed under finite union.

35. If
$$\omega \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$$
, then $\omega \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$.
36. $(\mathbf{A} - \mathbf{B})^{\mathbf{C}} = \mathbf{A}^{\mathbf{C}} - \mathbf{B}^{\mathbf{C}}$.

37. The sequence $\{A_n\}$ where $A_n = [2 + \frac{1}{n}, 5 + \frac{1}{n}]$ is a monotone sequence of sets.

38.
$$\sum_{j=1}^{n} ar^{j} = \frac{a(1-r^{n})}{1-r}$$
$$Q \lor (R \land S)$$
$$39. \quad Q \to S$$
$$\therefore S$$

40. I will pass Stat 117.