S117-FE-002
Statistics 117
Final Exam

Mathematics for Statistics
TGCapistrano

I. FILL IN THE BLANKS.

1. The minimal sigma-field containing C_{1} denoted by $\sigma(\mathrm{C})$, is defined as a collection of subsets of Ω that satisfies the following:
a) \qquad
b) \qquad
c) \qquad
2. The field, denoted by F , is defined as a collection of subsets of Ω that satisfies the following:
a)
b) If \qquad , then \qquad .
c) If \qquad then \qquad .
3. The class $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ where $A_{i} \subset A(i=1,2, \ldots n)$ is defined to be a partition of set A if and only if it satisfies the following:
a)
b)
4. The limit of a monotone nondecreasing sequence of sets $\left\{A_{n}\right\}$ is \qquad .
5. The limit of a monotone nonincreasing sequence of sets $\left\{A_{n}\right\}$ is \qquad .
6. The steps in proving that statement $\mathrm{P}(\mathrm{n})$ is true $\forall \mathbb{Z}^{+} n$ by mathematical induction are:
a) Step 1 : \qquad
b) Step 2: \qquad
c) Step 3: \qquad
d) Step 4: Conclude that $\mathrm{P}(\mathrm{n})$ is true for all positive integer n .
7. In proving the statement $\mathrm{p} \rightarrow \mathrm{q}$,
a) By direct method, we assume that \qquad is/are true.
b) By contradiction, we assume that \qquad is/are true.
c) By contrapositive, we assume that \qquad is/are true.
8. In disproving $p \rightarrow q$, we need to show a counterexample for which \qquad is/are true.
9. In proving $\mathrm{A} \subset \mathrm{B}$, we need to show that $\omega \in A$ implies \qquad .
10. In proving that A, B and C are pairwise disjoint, we need to show:
a) \qquad
b) \qquad
c) \qquad
11. Suppose an urn contains M balls for which K are defective and $M-K$ are non-defective.
a) The number of ordered samples with replacement of size n containing r defectives and $n-r$ non-defectives is \qquad .
b) The number of ordered samples without replacement of size n containing r defectives and $n-r$ non-defectives is \qquad .
c) The number of unordered samples without replacement of size n containing r defectives and n r non-defectives is \qquad _.

UP SCHOOL OF STATISTICS STUDENT COUNCIL Education and Research

W

erho.weebly.com \square erhomyhero@gmail.com

a) $\sum_{x=0}^{n}\binom{n}{x} a^{x-1}=$
\qquad -.
d) $\sum_{i=0}^{20}\binom{20}{i} \frac{3^{i+1}}{2}=$
b) $\sum_{j=0}^{\infty}\binom{10+j}{j} 0.2^{j}=$ \qquad e) $\sum_{j=1}^{100}\left(3^{2 j}+3 j\right)=$
\qquad -.
12.
c) $\sum_{j=0}^{\infty} \frac{2^{j}}{j!} j=$ \qquad - f) $\sum_{x=3}^{\infty} \frac{3}{x^{2}+x}=$
\qquad umbers a) $f(1)=$ \qquad b) $f(-3)=$ \qquad .
14. The number of ways of forming 5 committees with 3 members each is \qquad .
15. The number of distinct permutations of the word 'CHARACTER' is \qquad .
16. The number of distinct outcomes when we toss a die 10 times is \qquad .
17. The number of 5 -digit numbers that can be formed using the integers 0 to 9 is \qquad -.
18. An urn contains 10 balls marked from 1-10. Two balls will be selected using simple random sampling with replacement. Let $\Omega=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{i} \in\{1,2, \ldots 10\}, i=1,2\right\}$. Define $\mathrm{A}_{\mathrm{ij}}=$ set containing outcomes where the ith ball is selected on the jth draw.
a) The elements of set A_{11} are \qquad .
b) The elements of set $\mathrm{A}_{11} \mathrm{C} \cap \mathrm{A}_{12}$ are \qquad .
c) The set containing outcomes where the $1^{\text {st }}$ ball is not selected on any of the draws can be represented using tha A_{ij} 's as \qquad .

II. TRUE OR FALSE.

1. The set of real numbers is equivalent to the set of counting numbers.
2. The set of positive integers is equivalent to the set of integers.
3. The set of rational numbers is a non-denumerable set.
4. The set of all outcomes of tossing a coin $1,000,000$ times is a finite set.
5. $F(x)=x^{2}-1$ is one-to-one but not an onto function from the set of positive real numbers to the set of all real numbers.
6. $G(x)=|x-1|$ is onto but not one-to-one function from the set of nonnegative integers to the set of nonnegative integers.
7. If A is a field, then A is a sigma-field.
8. A subset of the set of all real numbers is a Borel set.
9. The Borel field is a minimal field.
10. A field is closed under finite intersection.
11. A field is closed under countable intersection.
12. The Borel field is closed under finite union.
13. The Borel field is closed under countable intersection.
14. $\mathrm{A}-\mathrm{B}$ and $\mathrm{B}-\mathrm{A}$ are pairwise disjoint.

UP SCHOOL OF STATISTICS STUDENT COUNCIL
 Education and Research

W erho.weebly.com \square erhomyhero@gmail.com
/erhoismyhero
15. To disprove the statement $\forall x, P(x)$ is true, it is enough to provide an example for which the proposition $\mathrm{P}(\mathrm{x})$ is false for some x in the domain of discourse.
16. To prove the statement $\exists x, P(x)$ is true, it is enough to provide an example for which the proposition $\mathrm{P}(\mathrm{x})$ is true for some x in the domain of discourse.
17. The proposition $\mathrm{p} v \sim \mathrm{p}$ is a tautology.
18. The proposition $\mathrm{p} v \mathrm{p}$ is a tautology.
19. The propositions $P \equiv(p \equiv q)$ and $Q \equiv(p \wedge q) \vee(\sim p \wedge \sim q)$ are logically equivalent to each other.
20. The propositions $P \equiv((p \vee q) \wedge r)$ and $Q \equiv(p \vee q)$ are logically equivalent to each other.
21. $((p \vee q) \wedge r) \rightarrow(p \vee q)$
22. $\sim(p \rightarrow q) \leftrightarrow(p \wedge \sim q)$
23. $(x=0$ and $y=0)$ is a sufficient condition for $x y=0$.
24. $(x=0$ and $y=0)$ is a necessary condition for $x y=0$.
25. If $x y \neq 0$, then $x=0$ and $y=0$.
26. If $x y \neq 0$, then $x=0$ or $y=0$.
27. If $A \cap B \cap C=\varnothing$, then the class $\{\mathrm{A}, \mathrm{B}$ and C$\}$ is pairwise disjoint.
28. If the class $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ is pairwise disjoint, then $A \cap B \cap C=\varnothing$.
29. For any sets X, Y and $\mathrm{Z}, n(X \cup Y \cup Z)=n(X)+n(Y)+n(Z)$.
30. If $\mathrm{B} \subset \mathrm{A}$, then $n(\mathrm{~A}-\mathrm{B})=\mathrm{n}(\mathrm{A})-\mathrm{n}(\mathrm{B})$.
31. If $\mathrm{B} \subset \mathrm{A}$, then $\mathrm{A}^{\mathrm{C}} \subset \mathrm{B}^{\mathrm{C}}$.
32. If $(A \cap B) \cup C=C$, then $A \cap B \subset C$.
33. A class that is closed under finite union will also be closed under countable union.
34. A class that is closed under countable union will also be closed under finite union.
35. If $\omega \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$, then $\omega \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$.
36. $(\mathrm{A}-\mathrm{B})^{\mathrm{C}}=\mathrm{A}^{\mathrm{C}}-\mathrm{B}^{\mathrm{C}}$.
37. The sequence $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ where $A_{n}=\left[2+\frac{1}{n}, 5+\frac{1}{n}\right]$ is a monotone sequence of sets.
38. $\sum_{j=1}^{n} a r^{j}=\frac{a\left(1-r^{n}\right)}{1-r}$
$Q \vee(R \wedge S)$
39. $Q \rightarrow S$
$\therefore S$
40. I will pass Stat 117.

